
Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

1 Assembly Language Programming and Optimization Techniques for the Power Architecture

Assembly Language Programming
and

Optimization Techniques
for the

POWER Architecture

©1993 Gary J Kacmarcik
platypus@curie.ces.cwru.edu

Assembly Language Programming and Optimization Techniques for the Power Architecture 1



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

2 Assembly Language Programming and Optimization Techniques for the Power Architecture
Abstract:  This  paper  presents  an  overview  of  the  POWER  architecture  and
discusses  techniques  for  writing  efficient  assembly  language  programs  for
machines  based  on  this  architecture  (and  its  derivatives).   IBM’s  RS/6000  is
currently  the  most  commonly  available  machine  which  is  based  on  this
architecture,  and  thus,  it  is  the  machine  which  is  used  as  the  focus  of  this
presentation.   After  a  brief  description  of  the  architecture  and  the  available
instructions, optimization techniques which are specific to POWER programs are
presented along with a discussion of why they are important.  In addition, a set of
tools  for  the  Macintosh  which  allows  programmers  to  assemble,  execute  and
analyze POWER assembly language programs is described.  These tools operate
on standard RS/6000 XCOFF format .o and .obj files.

Disclaimer: (from the Introduction)
Modifications to the POWER architecture for the PowerPC Architecture are not
discussed in detail and are only presented in this paper when ① the information is
important to the topic being discussed, and (most importantly) ② the information
has been publicly released by either IBM or Motorola.

Last Minute Note:
Immediately  after  finishing  (and  sending  off  the  “final”  copy  of)  this  paper,
Motorola released the technical information for the PowerPC 601.  While time
constraints prevented incorporating more detailed timing information about  the

Assembly Language Programming and Optimization Techniques for the Power Architecture 2



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

3 Assembly Language Programming and Optimization Techniques for the Power Architecture
601, the instruction set summary in Appendix A has been changed to incorporate
the new information.

Assembly Language Programming and Optimization Techniques for the Power Architecture 3



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

4 Assembly Language Programming and Optimization Techniques for the Power Architecture
1.0 Introduction

The POWER Architecture is a descendent of the
first  RISC  architecture,  IBM’s  801,  which  was
developed starting in 1975.  Since then, research
groups at IBM have enhanced the architecture
and have developed a variety of machines based
on it,  most  notably  the  IBM RT and the  RISC
System/60001† .

The  RS/6000  is  the  first  machine  to  use  the
POWER architecture and is a direct descendent
of  the  AMERICA  architecture.   The  AMERICA
architecture  was  IBM’s  first  attempt  at  a
“superscalar” architecture, i.e., one which could
execute more than 1 instruction per cycle.

The  PowerPC  architecture2‡  is  the  next
generation  of  the  POWER  architecture  and
includes  a  variety  of  modifications  which
facilitate its usefulness for desktop machines.

This article presents an overview of the POWER
architecture  and  discusses  techniques  for
writing  efficient  assembly  language  code.
Modifications to the POWER architecture for the
PowerPC are not discussed in detail and are only
presented in this paper when ① the information
is  important  to  the  topic  being  discussed,  and
(most importantly)  ② the information has been
publicly released by either IBM or Motorola.

2.0 Architecture Overview

This section presents an overview of the POWER
architecture,  but  first,  a  few paragraphs about
the  data  organization  of  the  processor  are
required.

2.1 Data Organization

The POWER architecture is  designed around a
word size of 32-bits, but it also has support for
doubleword (64-bit),  halfword (16-bit)  and byte
(8-bit)  operations.   Multi-byte data is  stored in

1† RISC System/6000 is a trademark of International Business Machines Corp.
2‡ PowerPC Architecture is a trademark of International Business Machines Corp.

Assembly Language Programming and Optimization Techniques for the Power Architecture 4



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

5 Assembly Language Programming and Optimization Techniques for the Power Architecture
big-endian  format  (most-significant  byte  first,
like the 680x0), but the architecture does define

load and store instructions which support little-
endian 

Assembly Language Programming and Optimization Techniques for the Power Architecture 5



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

6 Assembly Language Programming and Optimization Techniques for the Power Architecture

BPU: Condition Register (CR): Contains 8 fields to store comparison results
Link Register (LR): Holds target address for branch instructions
Counter Register (CTR): Used for decrement-counter-and-branch loops
Machine State Register (MSR): Contains flags describing state of processor

FXU: General Purpose Registers 0-31 (GPR 0-31): The 32 32-bit fixed-point registers
Fixed-Point  Exception  Register  (XER):  Contains  fixed-point  operation  results  and

flags
Multiply Quotient Register (MQ): Used by multiply, divide and extended shift op’s
Real-Time Clock (RTCU, RTCL): The real-time clock
Decrementer (DEC): Used to set interrupts after an elapsed time

FPU: Floating-Point Registers 0-31 (FPR 0-31): The 32 64-bit floating-point registers
Floating-Point Status and Control Register (FPSCR): Contains status of FPU

[Table 1.1] Summary of architected registers for the RS/6000.

format data (least-significant byte first, like the
80x86).   The PowerPC differs slightly from the
RS/6000 in that it has added an addressing mode
switch which allows it to operate in either big-

endian  or  little-endian  mode  ([Diefendorff93]
p.4).

Bits  within  bytes  (and  words,  et  al.),  however,
Assembly Language Programming and Optimization Techniques for the Power Architecture 6



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

7 Assembly Language Programming and Optimization Techniques for the Power Architecture
are  numbered  using  the  little-endian  format.
This means that bit 0 is the most significant bit
(many times interpreted as the sign bit).  This is
backwards  from  the  standard  number  scheme
that  Motorola  uses  for  the  680x0.   This  bit
numbering  scheme is  important  because  many
instructions require bits to be specified.

2.2 Overview

A POWER CPU is divided into 5 functional units:
the  Fixed-Point  Unit  (FXU),  the  Floating-Point
Unit  (FPU), the Branch Processing Unit  (BPU),
and the Instruction and Data Cache Units (ICU
and DCU).   These  units  are  interconnected  as
shown in [Figure 2.1].

The  BPU handles  all  instructions  involving  the
Condition  Register  and  all  branching
instructions.  All other instructions are passed on
to both the FXU and the FPU.  The BPU performs
instruction  lookahead  down  both  paths  of  a
branch to reduce or eliminate branch delay.  The
main  purpose  of  the  BPU is  to  resolve/remove

branches  and  provide  a  steady  instruction
stream to the Fixed- and Floating-Point Units.
The FXU handles all  fixed-point operations and
all load and store operations (including floating-
point  loads  and stores).   All  other  instructions
passed into the FXU are ignored.

The  FPU  handles  all  floating-point  operations.
Floating-point  loads  and  stores  are  passed
through the floating-point pipeline so that they
can be synchronized with the fixed-point pipeline
(where the loads/stores are actually executed).

The ICU and DCU provide n-way set associative
cache3† interfaces  to  the  computer’s  main
memory.  The ICU feeds instructions to the BPU,
and  the  DCU  provides  read/write  access  to
memory for the ICU, FXU and FPU.

2.3 The Branch Processing Unit (BPU)

The BPU fetches instructions from the ICU and
passes instructions that it can’t handle on to the

3† A set-associative cache limits where a particular block can go by restricting it to a set of blocks in the cache.  If there are n blocks in the cache set,
the cache is n-way set associative.  (see [Patterson90])

Assembly Language Programming and Optimization Techniques for the Power Architecture 7



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

8 Assembly Language Programming and Optimization Techniques for the Power Architecture
FXU  and  FPU.   The  BPU  handles  all  of  the
instructions  which  involve  branching  or  the
Condition Register.

The BPU consists of 4 architected registers: the
Condition  Register  (CR),  the  Counter  Register
(CTR), the Link Register (LR), and the Machine
State Register (MSR).

Assembly Language Programming and Optimization Techniques for the Power Architecture 8



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

9 Assembly Language Programming and Optimization Techniques for the Power Architecture

Field 0 Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7

LT GT EQ SO FXFEXVX OX
Fixed-Point Floating-Point

[Figure 2.2] Interpretation of the bits in the Condition Register

The Condition Register consists of 8, 4-bit fields
(numbered 0-7) which contain flags that indicate
the  result  of  various  operations.   The
interpretation of the bits in each field depend on
whether they were set as a result of a fixed- or a
floating-point operation.

When  a  CR  field  is  set  due  to  a  fixed-point
operation, the 4 bits are interpreted as follows:

bit 0: [LT] Result is Less Than 0, or negative.
bit 1: [GT] Result is Greater Than 0, or 
positive.

bit 2: [EQ] Result is Equal to 0.
bit 3: [SO] Summary Overflow. From 
XER[SO].

When a  CR field  is  set  due  to  a  floating-point
operation, the 4 bits are interpreted as follows:

bit 0: [FX] FP Exception.
bit 1: [FEX] FP Exception Enable.
bit 2: [VX] FP Invalid Operation Exception.
bit 3: [OX] FP Overflow Exception.

The  values  of  these  bits  are  taken  from  the

Assembly Language Programming and Optimization Techniques for the Power Architecture 9



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

10 Assembly Language Programming and Optimization Techniques for the Power Architecture
FPSCR  (q.v.  FPU)  after  the  instruction  has
completed.

The  organization  of  the  Condition  Register  is
shown in [Figure 2.2].  Note that any of the eight
fields can hold the result of either a fixed-point
or a floating-point operation.

CR Field  0 can be implicitly  set  by  fixed-point
operations, and CR Field 1 can be implicitly set
by floating-point operations.  The other fields can
be  specified  to  store  the  result  of  compare
operations, and operations are provided to move
between two CR fields.

The 8 different CR fields allow the programmer
to use  different fields for different conditional
branches.   This  also  provides  a  mechanism by
which the programmer can move the condition
upon which a branch is dependent earlier in the
code to facilitate zero-cycle branching (q.v. §6.0
Branching Optimization Techniques).

The Counter Register (CTR) is used to efficiently
implement  branch  and  count  operations.   The
branch and count operation uses this register in

the  BPU  instead  of  directly  accessing  a  GPR
(located in the FXU) because directly accessing
the  FXU  would  incur  extra  cycle  penalties
moving  the  data  between  the  processor  units.
Requiring  the  programmer  to  add  an  extra
instruction to move the count-loop limit into this
special  register  gives  the  programmer  the
opportunity  to  schedule  the  CTR-loading
instruction  so  that  this  penalty  is  executed  in
parallel  with  another  instruction,  thus
eliminating any delay.

The Link Register (LR) is used to hold the target
address for certain types of branch instructions.
Branching through the LR is the standard way to
return from a routine.  The LR is typically loaded
by setting the  link  bit  in  a  branch instruction,
which  automatically  loads  the  address  of  the
instruction immediately after the branch into the
LR.

The Machine State Register (MSR) contains an
array of flags which defines the current state of
the  processor.   These  flags  include  Exception
Enable, Instruction/Data Relocate and Alignment
Check flags.

Assembly Language Programming and Optimization Techniques for the Power Architecture 10



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

11 Assembly Language Programming and Optimization Techniques for the Power Architecture
In addition, the BPU also contains the Save and
Restore Registers (SRR’s) which are used to save
and  restore  the  state  of  the  processor  when
there is an interrupt.

2.4 The Fixed-Point Unit (FXU)

The FXU handles all of the fixed-point arithmetic
operations  and  all  of  the  data-address
calculations 

Assembly Language Programming and Optimization Techniques for the Power Architecture 11



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

12 Assembly Language Programming and Optimization Techniques for the Power Architecture

for itself and the FPU.  The FXU controls how the
FPU interacts  with the data  cache and directs
the flow of data to and from it.

The  FXU  contains  32,  32-bit  general  purpose
registers  (GPR 0  -  GPR  31)  and  a  Fixed-Point
Exception Register (XER).  Four special purpose
registers (MQ, RTCU, RTCU, and DEC) are also
included in the FXU.

The  XER  contains  the  Carry,  Overflow  and
Summary Overflow bits.  The Carry bit is set and
cleared  based  on  whether  or  not  a  fixed-point
arithmetic operation produces a carry out of bit
0.  The Overflow bit is likewise set or reset based
on  whether  or  not  the  operation  causes  an
overflow.   The  Summary  Overflow  is  set
whenever the Overflow bit is set, but it is never
automatically  cleared  -  the  SO  bit  must  be
explicitly cleared by the programmer.

The RS/6000 also includes  a  Multiply  Quotient
(MQ)  register  which  is  used  by  the  multiply,
divide and a few other instructions.  This register
has been removed from the PowerPC because it

is  considered  a  single  resource  which  causes
unnecessary  conflicts  in  superscalar  imple-
mentations ([Oehler92], [Case91]).

The RTCU, RTCL and the DEC registers are used
to  access  the  64-bit  Real-Time  Clock  in  the
RS/6000.   The  RTC  is  divided  into  an  upper
(RTCU) and a lower (RTCL) register to make it
easier to access the clock.  The RTCU contains
the time in seconds, and the RTCL contains the
time in nanoseconds.  The DEC register is used
to signal in interrupt after a specified amount of
time has passed.

2.5 The Floating-Point Unit (FPU)

The  FPU  contains  32,  64-bit  floating-point
registers (FPR 0 - FPR 31) and a Floating-Point
Status and Control Register (FPSCR).

The  FPR’s  are  used  for  all  floating-point
operations and the FPSCR contains a wide array
of flags for the floating-point unit, including the
current  rounding  mode,  flags  indicating  which
exceptions  are  enabled,  the  result  of  previous

Assembly Language Programming and Optimization Techniques for the Power Architecture 12



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

13 Assembly Language Programming and Optimization Techniques for the Power Architecture
instructions  (less  than,  greater  than,  equal,
unordered)  and  flags  indicating  whether  an
exception has occurred.

The  floating-point  unit  provides  the  hardware
necessary for a POWER system to conform to the
IEEE  Standard  for  Floating  Point  Arithmetic
(ANSI/IEEE 754-1985), but relies on supporting
software for the system to be fully compliant4†.

Because  of  IBM’s  aggressive  floating-point
engine  in  the  RS/6000,  there  was  no  speed
advantage  to  performing  single-precision
arithmetic and it  was therefore not included in
the  architecture.   The  RS/6000  performs  all
floating-point operations in double-precision and
rounds to single-precision if needed.

However, many of the PowerPC implementations
will not be able to afford the additional cost and
complexity of the hardware which is found in the
RS/6000’s  floating-point  unit.   It  is  for  this
reason  that  single-precision  operations  were
added to the instruction set for the PowerPC.

3.0 Instruction Set

This section presents an overview of the POWER
Architecture  instruction  set.   It  is  intended  to
provide  an  introduction  to  and  to  complement
the instruction set list given in Appendix A.

3.1 Addressing Modes

There are basically five addressing modes in the
POWER  architecture:  Absolute,  Absolute
Immediate,  Relative  Immediate,  Indexed  and
Based Addressing.

Absolute  Addressing specifies  an  absolute
address as the contents of a register.  E.g.:

br

Branch  unconditionally  to  the  absolute
address stored in the Link Register.

Absolute Immediate Addressing specifies a 26-bit
absolute address as an immediate value which is

4† For example, the square-root operation (required by the standard) needs to be performed in software.
Assembly Language Programming and Optimization Techniques for the Power Architecture 13



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

14 Assembly Language Programming and Optimization Techniques for the Power Architecture
encoded directly in the instruction.  E.g.:

ba <label>

Branch  to  the  absolute  address  specified  by
<label>.

Assembly Language Programming and Optimization Techniques for the Power Architecture 14



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

15 Assembly Language Programming and Optimization Techniques for the Power Architecture
Relative Immediate Addressing specifies a 26-bit
offset which is added to the current instruction
counter  to  produce  an  absolute  address.   The
offset is encoded in the instruction.

b <label>

Branch to the address specified by <label>.

Indexed  Addressing calculates  an  absolute
address by adding the contents of two registers
together.  If the first register specified is GPR 0,
the second register is added with 0.  E.g.:

lx r31,r20,r2
lx r30,0,r1

Load  r31 with  the  word  from  the  address
calculated from the sum of r20 and r2.  Load
r30 with the word from the address that  r1
points to.

Based Addressing calculates an absolute address
from a base register and an 16-bit offset.  The
offset  is  added  to  the  contents  of  the  base
register to produce the address.  If GPR 0 is used

as  the  base  register,  this  is  interpreted  as
meaning that no base register should be used.
E.g.:

l r31,12(r2)
l r30,12(0)

Load r31 with the word located 12 bytes from
the address that  r2 points to.  Load  r30 with
the word located at absolute address 12.

3.2 The Instructions

A list of instructions used by POWER processors
is  given in  Appendix  A.   This  table  contains a
brief  description  of  each  instruction  and  its
syntax.   Instructions  which  are being  removed
for the PowerPC are marked with a ‘✗’  at  the
beginning  of  the  instruction  description.   The
information for this table was derived from the
RS/6000  Assembly  Language  Reference
[IBM92a]  with  additions  from  [Oehler92],
[Diefendorff93] and [Case91,92].

A  summary  of  the  changes  made  for  the
PowerPC is given in Appendix B.  This is not a

Assembly Language Programming and Optimization Techniques for the Power Architecture 15



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

16 Assembly Language Programming and Optimization Techniques for the Power Architecture
complete  list  of  the  modifications  made,  but
attempts to cover the major changes which will
affect programmers.
Many  of  the  instructions  listed  in  Appendix  A
have optional modifiers which can be added to
the  end  of  the  base  mnemonic  to  change  the
operation  of  the  instruction.   Each  instruction
mnemonic  is  followed  by  the  valid  suffixes
enclosed  in  square  brackets  (e.g.:  a[o][.]).
These  suffixes  are  standard  across  the
instruction set and are summarized here:

. Set  the Record Bit  in the instruction so
that  the  condition  codes  are  set.   The
condition codes are stored in CR field 0
(for fixed-point) or CR field 1 (for floating-
point)  based  on  the  results  of  this
instruction.

o Set the overflow (and summary overflow)
bits  in  the  XER based on the  results  of
this instruction.

Load  and  store  operations  may  have  the
following modifiers:

u Update the  source register  RA with the
calculated  address  after  the  load/store
operation has been performed.

x Use indexed addressing (i.e. sum RA with
RB) to calculate the effective address.  If
this is not specified, the default is Based
Addressing.

Branch  instructions  may  have  the  following
modifiers:

l Save  the  address  of  the  instruction
immediately  following the  branch in  the
Link Register.

a Consider  the specified address to be an
absolute  address,  i.e.  don’t  add  the
address  of  the  branch  to  compute  the
branch target address.

As is evidenced by the size of Appendix A, the
POWER instruction set is quite rich and is hardly
a  reduced instruction  set.   The  acronym RISC
has  actually  become somewhat  of  a  misnomer.
While  many of  the original  RISC machines did

Assembly Language Programming and Optimization Techniques for the Power Architecture 16



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

17 Assembly Language Programming and Optimization Techniques for the Power Architecture
have  a  reduced  number  of  instructions  (when
compared  with  their  CISC  counterparts),  the
commonly  accepted  tenants  of  RISC
architectures  do  not  require that  there  be  a
small (or even reduced) number of instructions.

Assembly Language Programming and Optimization Techniques for the Power Architecture 17



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

18 Assembly Language Programming and Optimization Techniques for the Power Architecture
4.0 Architecture Revisited

A more detailed  look  at  the  execution  units  is
useful  for  understanding  how  the  instructions
execute and how they interact with each other.

4.1 The Instruction Pipeline

The  POWER  architecture  defines  a  8-stage
overlapped pipeline which is divided between the
BPU, FXU and FPU.

Stage 1: Instruction Fetch (IF) BPU

Instructions  are  fetched  from  the  instruction
cache  and  placed  in  the  BPU’s  instruction
buffers.   The BPU has a Sequential  Instruction
Buffer (SeqIB: 8 words) and a Target Instruction
Buffer (TarIB: 4 words).  Instructions are loaded
into  the  SeqIB  and,  if  one  of  the  first  5
instructions in the SeqIB is a branch instruction,
instructions starting at the target of the branch
are loaded into the TarIB.

Stage 2: Instruction Dispatch and 
Branch Execute (IDBE) BPU

Branch and CR instructions are executed during
this stage and all other instructions are sent to
the next pipeline stage.  Instructions which pass
from this stage are sent to both stage 3X (decode
in  the  FXU)  and  stage  3F  (predecode  in  the
FPU).

The IDBE stage can handle up to 4 instructions
per  cycle:  dispatching  2  instructions  to  the
arithmetic units and executing one branch and
one CR instruction.

Stage 3X: Fixed-Point  Decode  (FXD)
FXU

Instructions are decoded and either sent to the
next  stage  (FXE)  or  discarded  from the  fixed-
point pipeline.  All fixed-point operations and all
load/store  operations  (both  fixed-  and  floating-
point) are passed on to the next stage.

Assembly Language Programming and Optimization Techniques for the Power Architecture 18



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

19 Assembly Language Programming and Optimization Techniques for the Power Architecture
Stage 4X: Fixed-Point  Execute  (FXE)

FXU

Fixed-point  instructions  are  executed  and
load/store  operations  have  their  addresses
generated and searched for in the TLB5†.
Stage 5X: Fixed-Point Data

Cache Access (FXC) FXU

The data cache is accessed and the results are
sent to either the fixed-  or  floating-point units.
During  this  stage,  register-register  operations
write their results to the register file.

Stage 6X: Fixed-Point  Writeback  (FXWB)
FXU

The  results  of  the  (non  register-register)
instructions are written to the register file.

Stage 3F:Floating-Point Predecode (FPPD)FPU

Instructions  are  predecoded  and  either

discarded or passed to stage 4F (FPRR).  Loads
and stores  are  passed  through the  pipeline  so
that  the  pipelines  can be  synchronized  and so
that  the  registers  can  be  remapped  and
normalized (if necessary).

Stage 4F:Floating-Point Register
Remap (FPRR) FPU

During this stage, the registers for floating-point
operations  (including  loads  and  stores)  are
remapped.  Remapping is discussed in detail in
§4.3 Floating-Point Register Remapping.

Stage 5F:Floating-Point Decode (FPD) FPU

The instruction is decoded and passed on to the
execution  phase  of  the  pipeline  if  all  of  the
required data is available.

Stage 6F:Floating-Point Execute 1 (FPE1)FPU

This  is  the  first  stage  of  the  floating-point
multiply-add pipeline.

5† A translation-lookaside buffer (TLB) is special cache which is used to store address translations when the page table get so large that it must be
paged itself. (see [Patterson90])

Assembly Language Programming and Optimization Techniques for the Power Architecture 19



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

20 Assembly Language Programming and Optimization Techniques for the Power Architecture
Stage 7F:Floating-Point Execute 2 (FPE2)FPU

This  is  the  second  stage  of  the  floating-point
multiply-add  pipeline.   Instructions  which
depend on the results of this instruction and are
currently  in  decode  (Stage  5F)  of  the  pipeline
can  get  the  results  directly  from  the  pipeline

instead  of  waiting  for  writeback  (Stage  8F)  to
complete.

Stage 8F:Floating-Point Writeback (FPWB)FPU

The results from Stage 7F are written into the
register file.

Assembly Language Programming and Optimization Techniques for the Power Architecture 20



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

21 Assembly Language Programming and Optimization Techniques for the Power Architecture

lfdu f14
fma f15

lfdu f16
fms f17

lfdu f14
fma f15

lfdu f14,4(r13)
fma f15,f14,f1,f2

fa f18
bdn

lfdu f16
fma f15

bdn

lfdu f14
fma f15

lfdu f16
fms f17

fa f18
bdn

lfdu f14
fma f15

lfdu f16
fms f17

fa f18
bdn

lfdu f16,4(r14)
fms f17,f16,f3,f4

fa f18

fa f18,f15,f5 lfdu f14,4(r13)
fma f15,f14,f1,f2

lfdu f16,4(r14)
fms f17,f16,f3,f4

fa f18,f15,f5

lfdu f14
fma f15

lfdu f16
fma f15

bdn fa f18 lfdu f14
fma f15

lfdu f14,4(r13) lfdu f16,4(r14) lfdu f14,4(r13) lfdu f16,4(r14)

lfdu f14,4(r13)lfdu f14,4(r13) lfdu f16,4(r14)

lfdu f14,4(r13)
fma f15,f14,f1,f2

lfdu f16,4(r14)
fms f17,f16,f3,f4

fa f18,f15,f5 lfdu f14,4(r13)
fma f15,f14,f1,f2

lfdu f16,4(r14)
fms f17,f16,f3,f4

fa f18,f15,f5

lfdu f14,4(r13)
fma f15,f14,f1,f2

lfdu f16,4(r14)
fms f17,f16,f3,f4

fa f18,f15,f5 lfdu f14,4(r13)
fma f15,f14,f1,f2

lfdu f16,4(r14)
fms f17,f16,f3,f4

fma f15,f14,f1,f2 fms f17,f16,f3,f4 fa f18,f15,f5 fma f15,f14,f1,f2

fma f15,f14,f1,f2 fms f17,f16,f3,f4 fa f18,f15,f5

fma f15,f14,f1,f2 fms f17,f16,f3,f4fma f15,f14,f1,f2 fms f17,f16,f3,f4fma f15,f14,f1,f2 fms f17,f16,f3,f4

fma f15,f14,f1,f2

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

IF
IDBE

FXD

FXE

FXC

FXWB

FPPD

FPRR

FPD

FPE1

FPE2

FPWB

[Figure 4.1] The instructions from [Listing 4.1] as they flow through the pipeline.
Assembly Language Programming and Optimization Techniques for the Power Architecture 21



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

22 Assembly Language Programming and Optimization Techniques for the Power Architecture

4.2 A Sample Instruction Stream

[Figure 4.1] shows how the instructions from the
loop  given  in  [Listing  4.1]  flow  through  the
pipeline.

@0: lfdu fr14,4(r13)
fma fr15,fr14,fr1,fr2
lfdu fr16,4(r14)
fms fr17,fr16,fr3,fr4
fa fr18,fr15,fr5
bdn @0

[Listing 4.1] A nonsensical sample loop

After  the  pipeline  has  filled  with  instructions,
this  loop  requires  3  cycles  per  iteration  to
execute.  The next few paragraphs will describe
each cycle of the pipeline and the operations the
processor units perform.

During the first cycle, the first four instructions
from the  loop  are  brought  into  the  instruction
buffer in the Branch Processing Unit.

The  first  two  instructions  from  the  buffer  are
dispatched to the FXU and the FPU during the
second cycle, and the next four instructions are
read into the BPU’s buffer.  Only 2 instructions
are  shown  because  the  other  2  are  discarded
when the branch to the beginning of the loop is
taken.

The FXU and FPU receive the 2 instructions from
the  BPU  during  the  third  cycle.   The  FXU
discards  the  fma instruction.   The  BPU
dispatches the next 2 instructions and executes
the branch.

During the fourth cycle, the lfdu instruction has
its  address calculated in  the  FXU and has the
floating-point register renamed in the FPU.  The
registers for the  fma instruction are remapped.
The  2  arithmetic  units  receive  the  next  2
instructions (lfdu &  fms) and the FXU discards
the  fms instruction.  The branch unit sends the
fa instruction to the FXU and FPU.  The IF stage
of the BPU repeats from cycle 1.

Assembly Language Programming and Optimization Techniques for the Power Architecture 22



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

23 Assembly Language Programming and Optimization Techniques for the Power Architecture
The  fma instruction  is  in  decode  of  the  FPU
during cycle 5.  If there isn’t a cache miss for the
data coming back for the  lfdu,  then all  of the
data is available for this instruction and it passes
into the 

Assembly Language Programming and Optimization Techniques for the Power Architecture 23



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

24 Assembly Language Programming and Optimization Techniques for the Power Architecture

first execute stage next cycle.  During this time,
the  FPU  remaps/renames  the  lfdu and  fms
instructions and predecodes the fa.  Meanwhile,
the FXU is busy getting the data back from the
caches  for  the  first  lfdu instruction  and
calculating the address for the second.  It also
discards  the  fa instruction  from  it’s  pipeline.
The IDBE stage of the BPU repeats from  cycle 2.

Cycle 6 has the fma instruction executing and the
fms instruction in decode.  Again, if there isn’t a
cache miss, all of the data for the fms is available
and it will be sent on to the execute stage for the
next cycle.  The fa instruction is being renamed
in the FPRR stage.  The FXU is getting the data
for the second  lfdu and sending it to the FPU.
The FXE stage of the FXU is idle because there is
no fixed-point instruction to execute.  The FXWB
stage is also idle because there is no result  to
write to the register store.  The FXD stage in the
FXU and the FPPD stage in the FPU repeat from
cycle 3.

The  fma and  the  fms instructions  are  in  the
floating-point execute stages during cycle 7.  The

fa instruction is  in decode and will  pass on to
execute  for  the  next  cycle  because  fr15 (the
result of the fma in stage 7F) can be read directly
from the  pipeline  instead  of  waiting  until  it  is
written to the register store.  The FXE (in the
FXU) and FPRR (in the FPU) stages are repeated
from cycle 4.

The  final  cycle  of  this  example  has  the  fma
writing its  results to  the floating-point register
store and the fms and fa instructions in execute.
The FXC and FPD stages are repeated from cycle
5.

Note that an extra 1-cycle fixed-point instruction
can  be  added  either  before  or  after  the
fa fr18,fr15,fr5 instruction  and  each  loop
iteration will still execute in 3 cycles.  This can
be clearly seen by the empty space in the FXE
during cycle 6.

4.3 Floating-Point Register Remapping

Remapping  is  the  process  by  which  the  32
architected  registers  are  mapped  into  the  38

Assembly Language Programming and Optimization Techniques for the Power Architecture 24



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

25 Assembly Language Programming and Optimization Techniques for the Power Architecture
physical  registers  of  the  RS/6000.   The
remapping  is  done  by  looking  up  the  physical
register number associated with the architected
register in the Map Table.

Initially there are 32 physical registers which are
associated  with  architected  registers  and  6
physical registers which are “free”.  These free
registers are used whenever a floating-point load
instruction  is  executed.   A  floating-point  load
causes the architected register to be renamed to
one of the physical registers on the free list.

This  renaming  is  useful  because  it  divides
accesses  to  a  architected  register  into  two
physical registers: 1 before the load and 1 after
the load.  This allows floating-point operations to
be overlapped while still  allowing  instructions
before the load to access the old value.  Once the
load is finished executing, the physical register
corresponding to the architected register before
the load is added to the free list.

This can be demonstrated on the following code:

fa fr14,fr15,fr16

lfd fr14,...
fa fr17,fr14,fr15
lfd fr14,...
fa fr18,fr14,fr16

This sample of code, while somewhat unrealistic,
demonstrates  how  the  remapping/renaming
works.  Initially, assuming that the Map Table is
set to identity, the registers for the first  fa are
mapped  into  pr14,  pr15,  and  pr16 (where  pr
stands  for  physical  register).   The  first  lfd
causes  fr14 to be renamed to a  pr on the free
list,  in  this  case  pr32 (since  pr0 -  pr31 are
already  allocated).   This  makes  the  remapping
for the second fa become pr17, pr32, pr15.  The
second  lfd causes another renaming for  fr14,
this time to  pr33, which results in the mapping
for the third fa being pr18, pr33, pr16.

Basically, this code sample maps fr14 into three
different physical registers,  which frees up the
load and subsequent arithmetic operations from
waiting until  the  fr14 is  no longer  being used
before loading its new value.

With the large number of floating-point registers,
Assembly Language Programming and Optimization Techniques for the Power Architecture 25



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

26 Assembly Language Programming and Optimization Techniques for the Power Architecture
it  might  seem like  this  remapping  is  not  very
useful if registers are chosen intelligently.  While
this  may  be  true  to  a  degree,  the  remapping
scheme  is  useful  when  there  aren’t  enough
registers to hold all of the values required by a
computation and it also provides a mechanism by
which more than 32 floating-point registers can
be  used  in  a  system  without  changing  the
instruction coding.

Assembly Language Programming and Optimization Techniques for the Power Architecture 26



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

27 Assembly Language Programming and Optimization Techniques for the Power Architecture
5.0 Basic Block Optimization 
Techniques

This  section  presents  various  techniques  for
improving the execution speed of a sequence of
instructions  within  a  basic  block6†.   There  are
many  standard  techniques  (e.g.:  common
subexpression  elimination,  constant  folding,  et
al.) which are not presented here because they
can be applied to any architecture.  This section
focuses on those techniques which are specific to
the POWER architecture.

These  techniques  are  very  important  for
assembly language programmers because one of
the philosophies of RISC architectures is that the
large  amount  of  the  processor  resource
scheduling is performed at the program level (as
opposed  to  the  microcode  level).   Failure  to
employ these techniques can result in programs
which,  while  functionally  correct,  fail  to  make
proper use of the CPU resources.

5.1 Instruction Mixing

A good way to insure that full use is being made
of the processor’s resources is  to  have a good
mix  of  fixed-point,  floating-point  and  “branch
related”  instructions.   The  architecture  was
designed to execute multiple instructions in the
same cycle, but only 1 instruction of each type
can be executed at a time.

For  instruction  mixing  concerns,  there  are  4
basic types of instructions: fixed-point, floating-
point,  branching,  and  CR-related.   An  ideal
instruction  mix  would  contain  1  of  each
instruction type for every 4 instructions.

In practice,  it  is  rarely  possible to achieve the
above  “ideal”,  because  instruction  streams  are
typically dominated by either fixed- or floating-
point  instructions,  and  CR-related  instructions
are used infrequently.

The  worst  situation  is  where  the  instruction
stream  is  completely  dominated  by  one

6† A basic block is a consecutive sequence of instructions where the flow of control enters only at the beginning and exits only at the end. (see
[Aho86])

Assembly Language Programming and Optimization Techniques for the Power Architecture 27



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

28 Assembly Language Programming and Optimization Techniques for the Power Architecture
instruction  type.   In  this  case,  the  other
execution units are basically waiting idly.

Fortunately,  the Fixed- and Floating-Point Units
both  have  Instruction  Prefetch  Buffers  (IPB’s)
between  the  BPU  and  the  decode/predecode
stages of their pipelines.  These buffers can hold
6 instructions and allow the BPU to run ahead of
the arithmetic units.

These buffers give the programmer some slack in
arranging the instructions.  In general, as long
as the number of fixed-point instructions in a row
is less than 6 and the number of floating-point
instructions in a row is less than 3, there will be
few, if any, wasted cycles in the other arithmetic
unit.

Another  bad  situation  is  when  the  instruction
stream contains a large number of  CR-logic or
branching instructions in a row.  In this case, the
BPU is too busy processing its own instructions
to fetch and dispatch instructions to  the other
execution units.

5.2 Multi-Cycle Instructions

Even though almost all of the instructions in the
POWER instruction  set  “execute”  in  1  cycle7†,
there  are  few  instructions  which  do  not.   If
possible,  these  instructions  should  have  the
delay  covered  by  instructions  in  the  other
execution units.

The  fixed-point  multiplication  instruction
requires between 3 and 5 cycles in the FXE stage
of  the  pipeline  to  complete  execution.   The
number of cycles required is dependent on the
multiplier for the operation.  The multiplier is RB
for  muls and the immediate value for the  muli
instruction.   If  the  multiplier  is  a  signed-byte
quantity  (between  -128  and  127),  then  the
multiply  will  take  3  cycles;  if  it  is  a  signed-
halfword  quantity  (-32768  to  32767)  it  will
require 4 cycles; and if it is a word quantity, it
will require 5 cycles.  The mul instruction always
requires 5 cycles.

Fixed-point division always takes 19 cycles, and

7† None of the instructions really execute in 1 cycle, but 1 instruction can be completed each cycle because of the pipeline.
Assembly Language Programming and Optimization Techniques for the Power Architecture 28



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

29 Assembly Language Programming and Optimization Techniques for the Power Architecture
floating-point division takes between 16 and 19
cycles, depending on the current rounding mode.
Division is discussed in more detail in §5.9 Avoid
Division.

The load and store multiple instructions and the
string  operations  requires  multiple  cycles
depending  on  the  number  of  words  accessed.
The  lm and  stm instructions require 1 cycle per
register  moved.   The  load  and  store  string
instructions require 1 cycle for 

Assembly Language Programming and Optimization Techniques for the Power Architecture 29



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

30 Assembly Language Programming and Optimization Techniques for the Power Architecture

each word of  memory referenced.   And finally,
the  load  string  and  compare  byte  (lscbx)
instruction  requires  2  cycles  plus  1  cycle  for
each word of memory referenced plus 2 cycles
for each cache line crossed.

5.3 Data Alignment

Since misaligned data is generally handled by an
interrupt,  there  are  large  penalties  associated
with data that is not aligned properly.   Even if
the  misaligned  data  is  not  handled  by  an
interrupt, the penalty will be at least 1 additional
cycle.  The penalty associated with the interrupt
handler is roughly 70 cycles plus about 10 cycles
per word accessed.

Data alignment needs to be a concern even when
programming  in  high-level  languages.   A
compiler may take an array of 6-byte structures
and round each element  up  to  8-bytes  so  that
each element is aligned.  Be wary of this if you
increment pointers yourself – the compiler may
still  return 6 as the size of the structure (e.g.:
with sizeof() in C).

On  the  other  hand,  if  the  compiler  does  not
round  up  to  the  next  word  boundary  for
structures,  there is  the potential  for  alignment
penalties even if the elements are aligned within
the structure.  It is generally best to add padding
bytes yourself to make sure that the structures
and structure fields will be aligned.

5.4 Load-Use Delay

There is a 1-cycle delay between when a value is
loaded into a fixed-point register and when that
value  is  available  for  use.   This  delay  can  be
covered by inserting an independent instruction
between the load and the use.

Because floating-point loads are executed by the
FXU, and the FXU pipeline typically runs ahead
of the FPU pipeline, there is not usually a delay
between  loading  a  floating-point  register  and
using the new value.

5.5 Store-Load-Use Delay

If  the load is preceded by a store to the same

Assembly Language Programming and Optimization Techniques for the Power Architecture 30



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

31 Assembly Language Programming and Optimization Techniques for the Power Architecture
word  that  doesn’t  have  time  to  complete,  the
load will be delayed until the store is completed.
This delay is typically between 2 to 4 cycles.

Care must be taken when writing string routines
since if they are not written carefully, they may
access each word four times incurring multiple
store-load-use penalties.   E.g.:  a  routine which
performs  an  inline  conversion  of  a  length-
encoded string to a null-terminated string should
NOT be written as:

len = str[0];
for(i=0;i<len;i++)

str[i] = str[i+1];
str[i] = ‘\0’;

5.6 Floating-Point Set-Use

There is a delay of at least one cycle between a
floating-point instruction which sets a value, and
the first use of the newly computed value.  This
delay  can  be  covered  by  inserting  an
independent  floating-point  instruction  between
the set and the use.  The delay has been reduced
to only 1 cycle because of the bypass pathway

between stage 11 (FPE2) and stage 9 (FPD) of
the floating-point pipeline.

This bypass pathway, however,  cannot feed the
FRA position of the instruction in stage 9.  If the
floating-point set feeds the FRA position of the
second instruction, the delay is 2 cycles.

With  most  floating-point  instructions,  the  FRA
register  can be exchanged with  either  FRB or
FRC  without  changing  the  meaning  of  the
instruction.   With  the  two  floating-point
instructions that are not commutative (fd[.] and
fs[.]) this cannot be done and the delay must
be covered with 2 instructions. 

5.7 Condition Register

When  an  instruction  that  sets  a  field  of  the
Condition Register is encountered by the BPU, it
locks the field until its value can be updated.  An
instruction  which  relies  on  this  CR field,  must
wait  until  the  field  is  unlocked  before  it  can
access the proper value.

While a CR field is locked, no other instruction
Assembly Language Programming and Optimization Techniques for the Power Architecture 31



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

32 Assembly Language Programming and Optimization Techniques for the Power Architecture
which sets that field can be executed,  and the
pipeline  will  stall  in  the  BPU if  it  encounters
another CR-setting instruction for that field.

Because many instructions can implicitly set CR
field 0 or 1, indiscriminate use of the Record Bit
(by 

Assembly Language Programming and Optimization Techniques for the Power Architecture 32



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

33 Assembly Language Programming and Optimization Techniques for the Power Architecture

adding a ‘.’ after the mnemonic) can lead to a 2-
cycle delay between instructions.  E.g.:

a. r28,r29,r30
si. r31,r31,20
cmp cr0,r27,r26

There is a 2-cycle delay between each of these
instructions even though they have no register
interdependencies.  A simple rule to avoid this is
never  to  set  the  Record  Bit  of  an  instruction
unless the results are needed.

Even though there are 8 CR fields, the BPU has
only 4 internal lock bits.  As a result of this, the
CR fields are paired so that each lock bit controls
2  fields  of  the  CR.   These  field  pairs  are  as
follows: (0,4) (1,5) (2,6) (3,7)8†.

This  means  that  with  the  above  example,
replacing CR field 0 with CR field 4 would still
incur the same delay between the  si. and the
cmp.  Whereas using field 1, 2, 3, 5, 6, or 7 would

eliminate it.

5.8 Delayed-CR Instructions

Some  instructions  which  set  the  Condition
Register  are  known as delayed-CR instructions
because they require an additional cycle to send
the new CR value back to the BPU.  When using
these  instructions,  it  is  important  to  place  an
instruction  between the  CR loading instruction
and the instruction which requires that value or
else there will be a pipeline stall.

The  delayed-CR  instructions  are  marked  in
Appendix  A  with  a  ‘•’.   All  other  CR  loading
instructions are normal and do not require this
extra cycle before the updated CR value can be
accessed.

5.9 Avoid Division

Division  is  a  slow  operation  because  it  is
performed by  calculating  the  reciprocal  of  the

8† This “pairing” is required because of timing problems and technology limitations.  Future processors may not have this restriction.
Assembly Language Programming and Optimization Techniques for the Power Architecture 33



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

34 Assembly Language Programming and Optimization Techniques for the Power Architecture
divisor  and  then  multiplying  the  result  by  the dividend9‡  .  The multiplication is not a problem

because  multiplication  is  a  relatively  fast
operation.  The reciprocal, however, is calculated
by  iteratively  applying  Newton-Raphson’s
method,  after  seeding  it  with  an  initial  value
from a table.

The end result is that division takes between 16
to 19 cycles to execute: 19 cycles for fixed-point
divide and floating-point divide when in Round-
to-Nearest mode, and 16 cycles for floating-point
divides  when  using  any  of  the  other  three
rounding modes.

The  following  code  demonstrates  an  instance
where  performance  can  be  significantly
improved by using the fma instruction to replace
a division operation with a multiplication by the
reciprocal,  so  that  the  division  can  be  moved
outside a loop.  This is the code in C:

float x[50];
int d;

for(i=0;i<50;i++)
x[i] /= d;

Assembly Language Programming and Optimization Techniques for the Power Architecture 34



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

35 Assembly Language Programming and Optimization Techniques for the Power Architecture
And this is the assembly code before any division
specific optimizations have been applied:

# assume that r31 points to the
# start of the array and that fr30
# has been loaded with the value d

# load the CTR reg with the #
# of times we should iterate
lil r30,50
mtctr r30
# offset ptr to array so that
# we can use load-update
ai r31,r31,-4

@0: # load x[i] into fr31
lfs fr31,4(r31)
# x[i] /= d
fd fr31,fr31,fr30
# save x[i]
stfsu fr31,4(r31)
# dec CTR and branch if !0
bdn @0

If the division does not need to be exact (i.e.: it
can  tolerate  round-off errors),  the  body of  the
loop can be replaced with:

# calculate the reciprocal
fd fr29,1.0,fr30

@0: # load x[i] into fr31
lfs fr31,4(r31)
# x[i] *= (1/d)
fm fr31,fr29,fr31

9‡ This is a common technique used in many RISC processors and super-computers.
Assembly Language Programming and Optimization Techniques for the Power Architecture 35



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

36 Assembly Language Programming and Optimization Techniques for the Power Architecture
# save x[i]
stfsu fr31,4(r31)
# dec CTR and branch if !0
bdn @0

This  precomputes  the  reciprocal  and  then
multiplies by the reciprocal instead of dividing.
This moves the 19-cycle divide operation outside
the loop and replaces it with a 1-cycle (assuming
that the pipeline is full) multiply operation.

But the properties of the fma instruction can be
exploited to produce code which is functionally
equivalent to the above division code and does
not introduce round-off errors.

# calculate the reciprocal
fd fr29,1.0,fr30

@0: # load x[i] into fr31
lfs fr31,4(r31)
# temp = x[i] * (1/d)
fm fr28,fr31,fr29
# remainder = temp*d - x[i]
fms fr27,fr30,fr28,fr31
# x[i] = temp + (rem * 1/d))
fma fr31,fr29,fr27,fr28
# save x[i]

stfsu fr31,4(r31)
# dec CTR and branch if !0
bdn @0

Because  of  register  dependencies,  this
calculation requires 5 cycles per iteration: 1 (fm)
+ 2 (fms) + 2 (fma).  This code still multiplies by
the  precomputed  reciprocal,  but  it  also
calculates an error term and adjusts the result.
This adjustment works because the fma and fms
instructions are integral operations which do not
perform rounding on the intermediate results.

6.0  Branching  Optimization
Techniques

The  POWER  architecture  defines  a  separate
branch  processor  that  is  very  efficient  at
handling program branches which are structured
the  proper  way.   Poorly  structured  branches,
however,  can  cause  up  to  a  3-cycle  delay  per
branch.

This  section  begins  with  a  short  discussion  of
how  the  BPU  handles  branches  and  then
continues with two additional subsections, each

Assembly Language Programming and Optimization Techniques for the Power Architecture 36



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

37 Assembly Language Programming and Optimization Techniques for the Power Architecture
of which deals with one of the two most common
types of branching constructs: loop-continuation
and  if-then-else  branching.   Each  of  these
subsections  presents  common  branching
structures  and  discusses  the  relative  strengths
and weaknesses of each.

6.1 How the BPU Handles Branches

Whenever  the  BPU comes across  a conditional
branch, it fetches the instructions at the target
address, and sends the sequential10† instructions
on to the FXU and FPU.  These instructions are
sent  conditionally,  meaning  that  the  arithmetic
units know that these instructions may have to
be discarded if the branch is taken.

This  means that  if  the  conditional  branch falls
through (i.e.: the branch is not taken), the BPU
has  done  the  right  thing  by  sending  the
sequential instructions to the arithmetic units.  It
only needs to inform the FXU and FPU that the
instructions  are  no  longer  conditional  and  will
not be discarded.

However,  if  the  branch  is  taken,  the  BPU has
sent  the  wrong  instructions  and  must  cancel
them  and  send  the  correct  instructions.   The
potential  delay  is  minimized  because  the  BPU
has already fetched the target instructions and
only has to start sending them to the arithmetic
units.

This  delay  to  refill  the  pipelines  with  useful
instructions takes 3 cycles (assuming no cache
misses).

A useful feature of the BPU is that it calculates
the  destination  of  the  branch  as  soon  as  the
condition upon which the branch is  dependent
has been resolved.  This means that by placing at
least  3  independent  instructions  between  the
instruction setting the condition and the branch
dependent  on  that  condition,  the  programmer
can  insure  that  the  branch  will  be  resolved
before  the  BPU  starts  sending  post-branch
instructions to the arithmetic units.

6.2 Common Loop-Continuation Structures
10† The target  address  points  to  the  instruction that  should be executed if  the  branch is  taken.   The  sequential  instruction is  the  instruction
immediately following the branch, i.e. the instruction that should be executed if the branch is not taken.

Assembly Language Programming and Optimization Techniques for the Power Architecture 37



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

38 Assembly Language Programming and Optimization Techniques for the Power Architecture
One of the better ways to write a loop in POWER
assembly is to make use of the Count Register
(CTR).  The CTR is part of the BPU and thus, the
branch processor always has ready access to the
contents of this register.

Assembly Language Programming and Optimization Techniques for the Power Architecture 38



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

39 Assembly Language Programming and Optimization Techniques for the Power Architecture
A standard loop which uses the CTR loads the
number of iterations into the CTR before the loop
starts, and branches to the beginning of the loop

using one of the  dbzXX or  dbnXX instructions11†.
These  instructions  decrement  the  CTR  and
branch if it is zero (dbzXX) or non-zero (dbnXX) or
if  the given condition (specified as  XX)  is  true.
This can be shown as follows:

mtctr r0 # ctr = r0
@0: xxx

xxx
dbn @0

where the  xxx’s represent the body of the loop
(this convention of using “xxx” to represent the
loop  body  will  be  continued  throughout  this
subsection).

The  rest  of  this  subsection  will  discuss  loops
which  either  do  not  make  use  of  the  Count
Register or which rely on a condition being set in
addition to the value of the CTR.

A Standard Loop

When  iterating  through  a  loop,  the  loop-
continuation  structure  determines  whether  the
flow of  control  passes  to  the  beginning  of  the

Assembly Language Programming and Optimization Techniques for the Power Architecture 39



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

40 Assembly Language Programming and Optimization Techniques for the Power Architecture
loop, or to the next statement after the loop.  Of
these two potential statement-flow changes, it is
important that the return to the beginning of the
loop be more efficient than branch to the next
instruction after the loop.  This is based on the
assumption that the loop is going to be executed
more than once.
A standard way of structuring a loop is:

@0: xxx
xxx
cmp cr0,...
bXXc cr0,@0
yyy

This has the body of the loop followed by the test
to exit the loop followed by the branch back to
the  beginning  of  the  loop.   Unfortunately,  this
type of loop has characteristics which are exactly
the opposite of what we want.

The comparison occurs  immediately  before  the
branch,  thus  the  branch  condition  can’t  be
determined  before  the  BPU  needs  to  start
sending  instructions  which  occur  after  the

branch.  By default,  the BPU assumes that the
branch will fall through – a poor assumption for a
loop  –  and  starts  conditionally  sending
instructions  starting  at  yyy.  In  most  cases,
these  instructions  will  need  to  be  discarded
when the loop is repeated.

How to Make it Less Efficient

One way or rewriting this loop as an attempt to
improve it is:

@0: xxx
xxx
cmp cr0,...
¬bXXc cr0,@1
b @0

@1: yyy

where the  ¬bXXc is branch with the negation of
the original branching condition.

However, because the BPU cannot handle branch
instructions  (including  CR-related  instructions)

11† These instructions are extended mnemonics for the bc, bcc and bcr branch instructions.
Assembly Language Programming and Optimization Techniques for the Power Architecture 40



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

41 Assembly Language Programming and Optimization Techniques for the Power Architecture
while it is conditionally dispatching instructions
from  a  previous  branch,  the  BPU  has  an
additional stall  at  the  b instruction.   Note that
this stall occurs even for the fall-though case of
the ¬bXXc instruction, so the overall effect is that
this  code  always  executes  less  efficiently  than
the first loop.

Covering the Delay from the Loop Body

A  method  which  can eliminate  the  delay  is  to
move  instructions  from  the  body  of  the  loop
between  the  comparison  and  the  branch.   If
three  independent  instructions can be inserted
before the branch,  the branch will  be resolved
and  the  appropriate  instructions  will  be
dispatched without any delay.

@0: xxx
cmp cr0,...
xxx # 3 indep.
bXXc cr0,@0
yyy

This  method,  unfortunately,  cannot  always  be
applied to loops because it is not always possible

to find 3 independent instructions to place after
the comparison.

Assembly Language Programming and Optimization Techniques for the Power Architecture 41



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

42 Assembly Language Programming and Optimization Techniques for the Power Architecture
Test Condition at Beginning of Loop

Another  method  which  typically  eliminates  the
delay and can always be applied is as follows:

b @1
@0: ¬bXXc cr0,@2
@1: xxx

xxx
cmp cr0,...
b @0

@2: yyy

This can be considered the same as the second
looping example with the entire body of the loop
inserted  between  the  ¬bXXc and  the  b
instructions  and  the  cmp moved  before  the  b.
Note that this will eliminate the delay only if the
body  of  the  loop  is  at  least  2  instructions  (to
cover the delay between each execution of the
cmp instruction).

Five-Instruction Loops

A special  case  which should  be discussed is  a
loop  structure  which  contains  exactly  5

instructions:  4  instructions  and  a  loop  closing
branch.  In this situation, the loop will require at
least  3  cycles  per  iteration  due  to  limitations
within the BPU.

During the first cycle, the BPU will fetch the 4
instructions  from  the  loop  body.   During  the
second cycle, the BPU will fetch the loop closing
branch and the three instructions which follow it
(these  instructions  will  be  discarded  for  each
iteration  except  for  the  last).   The  branch  is
detected  on  the  third  cycle  and  the  target
address is calculated so that, on the fourth cycle,
it can fetch the 4 instructions from the loop body,
etc.

This situation can be easily avoided by unrolling
the loop.

6.3 Common If-Then-Else Structures

If-then-else  constructs  are  very  common
structures  which  can  be  manipulated
considerably to produce more efficient code.  A
standard method of implementing an if-then-else
sequence is:

Assembly Language Programming and Optimization Techniques for the Power Architecture 42



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

43 Assembly Language Programming and Optimization Techniques for the Power Architecture
cmp cr0,...
bXXc cr0,@0
# then-clause
xxx
b @1

@0: # else-clause
yyy

@1: zzz

This code works well in many cases, but is sub-
optimal in the situations when ① the then-clause
is less than 4 instructions long and thus cannot
completely cover the cmp-bXXc-b delay, or ② the
then-clause is less likely to be chosen than the
else-clause.

Swapping the Then- and Else-Clauses

If  the  then-clause  is  too  short  to  cover  the
branching delay, but the else-clause is relatively
long, then the condition can be negated and the
clauses reversed to eliminate any delay.  This is a
reasonable method to apply if both clauses have
equal  probability  of  executing  (or  if  the  else-
clause is more likely).

cmp cr0,...
¬bXXc cr0,@0
# old else-clause
yyy
b @1

@0: # old then-clause
xxx

@1: zzz

Copying and Pasting Code

If  both  clauses  are  very  short,  or  if  the  most
often executed clause is too short, then another
technique known as “pasting” or “gluing” must
be employed.

This  method basically  lengthens  both  the  else-
and the then-clause by copying instructions from
after  the  if-then-else  statement  and  inserting
them at  the  end  of  each  of  the  clauses.   The
terminating branch of the then-clause is modified
to branch to the instruction after the last copied
instruction.

cmp cr0,...
bXXc cr0,@0

Assembly Language Programming and Optimization Techniques for the Power Architecture 43



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

44 Assembly Language Programming and Optimization Techniques for the Power Architecture
# then-clause
xxx
zzz’
b @1

@0: # else-clause
yyy
zzz’

@1: zzz’’

Assembly Language Programming and Optimization Techniques for the Power Architecture 44



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

45 Assembly Language Programming and Optimization Techniques for the Power Architecture
Here, the first few instructions after the if-then-
else  statement  (zzz’)  have  been  added to  the
then-  and else-clauses.   The label  s2 has been
moved so that the then-clause continues at the
proper instruction.

If No Else, Then…

If there is no else-clause and the then-clause is
not expected to be the most oft executed, then
some  other  transformation  tricks  need  to  be
applied.

An  easy  way  to  eliminate  the  delay  with  a
seldom-used  then-clause  is  to  negate  the
condition  and move  the  then-clause  someplace
outside the sequential instruction stream.  In the
transformation shown below, the then-clause is
placed  before  the  condition  check  (although  it
could have been placed anywhere).  The normal
instruction  flow  jumps  over  the  then-clause,
performs  the  comparison  and  conditionally
executes  beyond  the  if-then  statement.   Since
this is the path that is expected to be executed
most often, the instructions will be enabled and
there will be no pipeline delays.

To illustrate  the  above transformation,  code  of
the form:

cmp cr0,...
bXXc cr0,@0
# then-clause
xxx

@0: zzz

can be transformed into something like:

b @1
# then-clause

@0: xxx
b @2

@1: cmp cr0,...
¬bXXc cr0,@0

@2: zzz

Optimizing From High-Level Languages

Many of these if-then-else optimizations are such
that  they  can  be  performed  from  a  high-level
language  as  well  as  assembly.  Hopefully,
compilers  will  be  intelligent  enough  to  detect
this  condition  automatically  and  generate  the

Assembly Language Programming and Optimization Techniques for the Power Architecture 45



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

46 Assembly Language Programming and Optimization Techniques for the Power Architecture
appropriate code.
6.4 Changes for the PowerPC

Branching  in  the  PowerPC  differs  from  the
POWER Architecture  in  that  the  PowerPC  has
added  more  complex  static  branch  prediction.
This  mechanism  predicts  that  backward
branches  will  be  taken  and  that  forward
branches will not be taken.

This  form of  branch prediction is  simpler  than
the dynamic techniques which some processors
implement, while providing most of the benefits.
A dynamic branch prediction scheme can detect
when the prediction is incorrect more than 50%
of  the  time  and  automatically  reverse  the
prediction.

The fact  that  the prediction in  the PowerPC is
static  requires  that  the program be profiled to
determine  whether  the  branch is  more  or  less
likely  to  be  taken.   A  reversal  bit  in  the
instruction  must  be  set  if  the  most  likely
direction is not the default direction that would
be made by the static branch prediction.

The modified branch prediction algorithm affects
loop closing branches more than the if-then-else
branches because the loop closing branches are
now more likely to be predicted correctly.  This
means  that  some  of  the  code  contortions
presented  in  §6.1  may  not  be  necessary  in  all
cases,  although the  basic  idea of  moving  back
the  condition  so  that  it  completes  before
instructions are dispatched after the dependent
branch cannot hurt.

Since forward branches are predicted as being
not  taken,  the  techniques  for  if-then-else
structures  presented  in  §6.3  are  still  valid.
However,  the  technique  for  when  there  is  a
rarely executed then-clause with no else-clause
can  be  modified  by  either  simply  setting  the
reversal  bit  or  by  moving  the  then-clause
somewhere  after the if-then structure (possibly
after  the  end  of  the  current  function).   If  the
then-clause is placed before the if-then structure,
then the branch back to it will be (erroneously)
interpreted  as  a  loop  closing  branch  and
predicted as being taken.

Even with the enhanced branch prediction, there

Assembly Language Programming and Optimization Techniques for the Power Architecture 46



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

47 Assembly Language Programming and Optimization Techniques for the Power Architecture
are  still  some  constructs  which  need  to  be
avoided.   It  is  doubtful  that  the  PowerPC  will
have (at least for the first few implementations)
the ability to predict through multiple unresolved
branches.  This means that a branch following an
unresolved  branch  should  still  be  avoided  if
possible.

Assembly Language Programming and Optimization Techniques for the Power Architecture 47



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

48 Assembly Language Programming and Optimization Techniques for the Power Architecture
Of  course,  relying  on  branch  prediction  is
unnecessary  if  the  condition  upon  which  the
branch is dependent is set far enough ahead of
time.   Setting  the  condition  far  in  advance  is
preferable  to  relying  on  the  branch  prediction
because  the  branch  will  be  optimal  no  matter
which direction the branch takes.

7.0 Writing Assembly Language 
Programs

Object files for the RS/6000 are stored using a
file  format  known  as  XCOFF,  which  is  a
derivative of a standard UNIX12† Common Object
File Format (COFF).

An  object  file  is  divided  into  three  major
sections: the  .text section, where the program
instructions and read-only  data  are stored;  the
.data section, where initialized read/write data
is  stored;  and  the  .bss section,  where  the
uninitialized read/write data is stored.

The  XCOFF  file  format  also  defines  other
sections  which  contain  loading  or  debugging
(symbol table, line number, et al.) information.
Programs can be further broken up into control
sections  or  csect’s.   When  writing  assembly
language  programs,  each  instruction  or  data
storage  directive  must  belong to  a  csect,  and
each csect must belong to one (and only one) of
the XCOFF file sections.

A  sample  assembly  language  program  which
makes use of various csects is given in Appendix
C.  This simple program demonstrates many of
the  basic  structures  required  for  assembly
language programs.

7.1 Register Usage Conventions

As with most systems, there are registers which,
while architected as general  purpose registers,
are  assigned  special  meaning  by  either  the
hardware  or  the  operating  system.   These
register  conventions  allow  functions  compiled
from different languages to be linked together.

12† UNIX was a registered trademark of AT&T, but is now (at the time of this writing) a trademark of UNIX † Systems Laboratories, which will soon be
owned by Novell, Inc.

Assembly Language Programming and Optimization Techniques for the Power Architecture 48



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

49 Assembly Language Programming and Optimization Techniques for the Power Architecture
GPR 0 is used in function prolog and epilog code
as storage space for the Link Register.

GPR 1 is used as the stack pointer.
GPR 2 contains a pointer to the Table of Contents
(TOC).   The  TOC  pointer  is  used  for  all
references across csects.

GPR 3 to GPR 10 contain the first 8 words of the
argument list and the return value list.

GPR 11 and GPR 12 are special scratch registers
which do not need to be saved or restored.

GPR  13  to  GPR  31  are  non-volatile  registers
which  must  be  preserved  (i.e.:  saved  and
restored)  by  any  routine  which  uses  them.
Registers  are  typically  used  from  the  highest
(GPR 31) to the lowest so that the  lm and  stm
instructions  can  be  used  to  save  and  restore
them easily.

FPR 0 is a scratch floating-point register which is
not preserved across calls.

FPR 1 to  FPR 13 contain the first  13 floating-

point parameters and function results.

FPR 14 to FPR 31 are non-volatile floating-point
registers  which  must  be  saved  and restored  if
they are modified in a function.

Condition  Register  fields  0,  1,  6,  and  7  are
scratch  fields  which  are  not  preserved  across
calls.  CR field 5 is reserved for system use.  CR
fields 2, 3, and 4 must be preserved if they are
modified in a function.

All  other  registers  are not  generally  preserved
across function calls.

7.2 Function Calling Conventions

Each function must perform a sequence of tasks
upon  entry  and  exit.   These  instruction
sequences are known as prolog and epilog code,
respectively.   The  epilog  and  prolog  are  very
similar  to  the  link A6,#-n and  the  unlk A6
instructions used in the 680x0 to build function
stack frames, except that the link/unlk pair was
never required on the 680x0.

Assembly Language Programming and Optimization Techniques for the Power Architecture 49



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

50 Assembly Language Programming and Optimization Techniques for the Power Architecture
The stack frame which is built  on the RS/6000
contains the saved registers for the function, the
local storage area, and sets aside space for the
OS  to  store  information  as  needed  during
execution.

When  a  function  is  first  entered,  the  stack
pointer  (r1)  points  to  the  stack  frame  for  the
caller  function  (the  function  which  called  the
current function).  

Assembly Language Programming and Optimization Techniques for the Power Architecture 50



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

51 Assembly Language Programming and Optimization Techniques for the Power Architecture

The stack pointer points to the link area for the
caller,  which  contains  the  back  chain  (stack
pointer for the function which called the caller),
the saved CR and LR, and space for the OS to
save other useful items like the function’s TOC
pointer.

Immediately  below  the  link  area  is  the  input
parameter area.  This is where the caller places
parameters for the functions that it calls.

The prolog code for the function must perform
the following operations:

• Save  any  FPR’s  and  GPR’s  which  are
modified  by  the  function  on  the  stack
immediately above the caller’s back-chain.

• Set aside as much local storage area on the
stack as it requires

• Allocate  space  for  an  argument  area
immediately  above  the  local  storage  area.
This area must be at least 8 words long.

• Allocate space for the function’s  link  area.
The link area is 6 words long.

• Save the back chain to the caller function in
its  link  area  and  set  the  stack  pointer  to
point to the beginning link area.

The epilog code basically undoes what the prolog
code set up.

The example program given in Appendix C has
comments which point out and describe the code
which is associated with the function prolog and
epilog operations.

Assembly Language Programming and Optimization Techniques for the Power Architecture 51



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

52 Assembly Language Programming and Optimization Techniques for the Power Architecture

Param 1

Param r

FPR q

FPR 31

GPR p

GPR 31

Param 1

Param n

Saved TOC
reserved
reserved
Saved LR
Saved CR
Back chain

Saved TOC
reserved
reserved
Saved LR
Saved CR
Back chain

Local
Storage
Area

(padding word)

on
entry

after
prolog

[Figure 7.1] RS/6000 stack frame before and
after the function prolog code is executed.

Assembly Language Programming and Optimization Techniques for the Power Architecture 52



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

53 Assembly Language Programming and Optimization Techniques for the Power Architecture
8.0 Teangaire

The  Teangaire  application  is  a  program which
runs on the Macintosh and loads RS/6000 .o files
into  a  POWER  architecture  emulator.   If  an
assembler source file is specified, the file is first
assembled and then the object file is loaded.

There  are  two  main  goals  of  the  application.
First, the application is intended to be a bridge
so  that  people  who  do  not  have  access  to  a
RS/6000 can practice writing assembly language
programs  for  a  POWER  processor  before  the
PowerPC is released.

The  second  goal  is  that  the  program  should
provide a mechanism for viewing the instructions
as  they  flow  through  the  pipeline  so  that
resource  conflicts  and  pipeline  stalls  can  be
readily identified.

8.1 The Emulatrix

The most basic function of  Teangaire is  that it
allows assembly language programs to be loaded
into a virtual machine and emulated instruction

by  instruction.   All  the  machine  registers  are
made  available  to  the  programmer  in  a  multi-
window environment which is shown in [Figure
8.1].

This part of the program provides all of the basic
functions of an emulator: registers can be edited,
breakpoints  can be set,  and there  is  a  limited
undo facility where the programmer can go back
to the machine state before an instruction was
executed.

8.2 The Pipeline Analyzer

Teangaire  also  provides  a  second  level  of
emulation where a section of code is analyzed as
it flows through the RS/6000 pipeline.

After this pipeline analysis is complete, a window
shows  each  stage  of  the  pipeline  for  each
instruction and identifies places in the pipeline
where the instruction flow has stalled.

The  analyzer  currently  identifies  most  of  the
basic pipeline stalls, but because of its relatively
simple  pipeline  model,  it  may  miss  situations

Assembly Language Programming and Optimization Techniques for the Power Architecture 53



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

54 Assembly Language Programming and Optimization Techniques for the Power Architecture
which are subtle or obscure.
8.3 Future Enhancements

As it  stands right now, Teangaire is  still  under
development  and  will  most  likely  undergo  a
variety of changes.

Eventually,  Teangaire  will  support  PowerPC
object files and will  have special  knowledge of
the idiosyncrasies of each processor.

There  are  also  plans  to  improve  the  pipeline
model, and hopefully add emulation support for
the instruction and data caches.  Currently, the
model uses the optimistic assumption that there
are no cache misses.

And finally, it is hoped that as people start to use
this  program,  suggestions  for  various  features
will be made.

8.4 How to Order

The Teangaire application will be made available
on the MacHack server and will be placed on the
CD which is distributed after the conference.

The  latest  version  can  also  be  anonymously
ftp’ed  from  ftp.ces.cwru.edu in  the
/pub/larvae directory.

I can be reached at:

Internet:
platypus@curie.ces.cwru.edu

AppleLink:
platypus@curie.ces.cwru.edu@internet#

US Mail:
4972 Leafy Mill West
North Ridgeville, Ohio  44039

If you enjoyed this paper, you might also enjoy
the following works by the same author:

• “A  Neuroethological  Model  of  the
Cockroach  Escape  Response”
[Kacmarcik91]

• “A  Model  of  Distributed  Sensorimotor
Assembly Language Programming and Optimization Techniques for the Power Architecture 54



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

55 Assembly Language Programming and Optimization Techniques for the Power Architecture
Control  in  the  Cockroach  Escape  Turn” [Beer91]

Assembly Language Programming and Optimization Techniques for the Power Architecture 55



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

56 Assembly Language Programming and Optimization Techniques for the Power Architecture

Assembly Language Programming and Optimization Techniques for the Power Architecture 56



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

57 Assembly Language Programming and Optimization Techniques for the Power Architecture

References

[Aho86]   Aho,  A.V.,  Sethi,  R.,  Ullman,  J.D.,
“Compilers:  Principles,  Techniques,  and
Tools”,  Addison-Wesley  Publishing  Company,
Reading,  Massachusetts,  ISBN 0-201-10088-
6, QA76.76.C65A37 1986.

[Beer91]  Beer, R.D., Kacmarcik, G.J., Ritzmann,
R.E.,  Chiel,  H.J.,  in  “Advances  in  Neural
Information  Processing  Systems  3”,
Lippmann,  R.P.,  Moody,  J.,  Touretzky,  D.S.
(ed’s), Morgan Kaufmann Publishers, 1991.

[Case91]  Case, B., “RS/6000 Architecture Fine-
Tuned  for  PowerPC”,  The  Microprocessor
Report,  Vol.  5  #24,  pp.  9-12,  26 December
1991.

[Case92]  Case, B., “IBM Delivers First PowerPC
Microprocessor”, The Microprocessor Report,
Vol. 6 #14, pp. 1,6-10, 28 October 1992.

[Diefendorff93]  Diefendorff,  K.,  “The  PowerPC
Architecture”,  document  included  with

PowerOpen  Association,  Inc.  literature,
Billerica, Mass., 1993.

[Gircys88]  Gircys,  G.R.,  “Understanding  and
Using  COFF”,  O’Reilly  &  Associates,  Inc.,
Sebastopol, California, 1988.

[Golumbic90]  Golumbic,  M.C.,  Rainish,  V.,
“Instruction  Scheduling  Beyond  Basic
Blocks”, IBM J. Res. & Develop., Vol. 34 #1,
pp.  93-97,  IBM Corporation,  G322-0169-00,
Jan 90.

[Grohoski90a]  Grohoski,  G.F.,  “Machine
organization  of  the  IBM RISC  System/6000
processor”,  IBM J.  Res. & Develop.,  Vol.  34
#1, pp. 37-58, IBM Corporation, G322-0169-
00, Jan 90.

[Grohoski90b]  Grohoski,  G.F.,  Kahle,  J.A.,
Thatcher,  L.E.,  Moore,  C.R.,  “Branch  and
Fixed-Point Instruction Execution Units”, IBM
RISC  System/6000  Technology,  pp.  24-32,
IBM Corporation, SA23-2619, 1990.

Assembly Language Programming and Optimization Techniques for the Power Architecture 57



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

58 Assembly Language Programming and Optimization Techniques for the Power Architecture
[IBM91]  Course  Outline  Notes  from  “RISC

System/6000  Hardware  Architecture”,  IBM
Corporation, IBM966-8211, 9 January 1991.

[IBM92a] “AIX Version 3.2 for RISC System/6000
Assembler  Language  Reference”,  IBM
Corporation, SC23-2197-01, January 1992.

[IBM92b]  “POWERstation  and  POWERserver
Hardware  Technical  Information  -  General
Architectures”, IBM Corporation, SA23-2643-
02, 1992.

[Kacmarcik91] “A Neuroethological Model of the
Cockroach  Escape  Response”,  Center  for
Automation  and  Intelligent  Systems
Research,  Case Western Reserve University,
Technical Report TR 91-133, June 1991.

[Kim92] Kim, J-H., Huang, W.,  “The AIX Binder
System”,  AIXpert,  pp.  29-36,   IBM
Corporation, August 1992.

[Motorola93]  “PowerPC  601  RISC
Microprocessor  User’s  Manual”,  Motorola,
MPC601UM/AD, 1993.

[Oehler92]  Oehler,  R.R.,  Outline  Notes  from
“PowerPC  Architecture”,  IBM  Corporation,
IBM966K-3635, 27 February 1992.

[Patterson90]  Patterson,  D.  A.,  Hennessy,  J.  L.,
“Computer  Architecture:  A  Quantitive
Approach”,  Morgan  Kaufmann  Publishers,
San Mateo,  California,  ISBN 1-55880-069-8,
QA76.9.A73P377 1990.

[Press92] Press, W.H., Teukolsky, S.A., Vetterling,
W.T., Flannery, B.P., “Numerical Recipes in C:
The Art  of Scientific Computing -  2nd Ed.”,
Cambridge University Press, Cambridge, UK,
QA297.N866 1992.

[Warren90]  Warren,  H.S.Jr.,  “Instruction
Scheduling  for  the  IBM  RISC  System/6000
Processor”,  IBM J.  Res.  & Develop.,  Vol.  34
#1, pp. 85-92, IBM Corporation, G322-0169-
00, Jan 90.

[Warren91]  Warren,  H.S.Jr.,  “Predicting
Execution  Time  on  the  IBM  RISC
System/6000”, IBM Corporation, GG24-3711-
00, July 1991.

Assembly Language Programming and Optimization Techniques for the Power Architecture 58



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

59 Assembly Language Programming and Optimization Techniques for the Power Architecture

Appendix A: RS/6000 & PowerPC Assembly Language Instruction Set Summary

The following notation is used in this appendix for the description of the instruction operation:

### a decimal number
0x### a hexadecimal number
Rn the contents of GPR Rn
(RA|0) the contents of GPR RA if RA!=0, or 0 if RA==0
FRn the contents of FPR Rn
x[y] bit y of register x
x{y} bitfield y of register x (range of bits between x[y*4] to x[y*4+3])
|x| absolute value of x
` sign-extend to 32-bits (eg: `0xA7E3 == 0xFFFFA7E3)
~ one's complement (eg: ~11001010 == 00110101)
& logical and (eg: 0101 & 0011 == 0001)
| logical or (eg: 0101 | 0011 == 0111)
^ logical xor (eg: 0101 ^ 0011 == 0110)
! bit concatenate (eg: 0110 ! 1101 == 01101101)
== test for equality
!= test for inequality (not equal)
a?b:c if (a) then (b) else (c)
rrot right rotate
lrot left rotate
% remainder
<< left shift

Assembly Language Programming and Optimization Techniques for the Power Architecture 59



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

60 Assembly Language Programming and Optimization Techniques for the Power Architecture
>> right shift

Parentheses may be used to group operations,  and ‘t’  is  used as a temporary swap space when the
contents of two registers depend on each other’s initial conditions.

Many  of  the  instruction  mnemonics  have  changed  between  the  POWER  and  PowerPC.   When  the
mnemonic has changed, the PowerPC form is the main entry and the POWER form is given in italics after
the instruction description.

In addition,  the instruction may be marked with one or more of the following symbols:

✗ Identifies an instruction which has been removed from the PowerPC.
✓ Identifies an instruction which has been added for the PowerPC. 
✧ Identifies an instruction which is implemented in the 601, even though the instruction is not 
part of the PowerPC specification.
✁ Identifies an instruction which is not implemented in the 601, even though the instruction is 
part of the PowerPC specification.
• Identifies a delayed-CR instruction (see §5.8 Delayed-CR Instructions).

Assembly Language Programming and Optimization Techniques for the Power Architecture 60



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

61 Assembly Language Programming and Optimization Techniques for the Power Architecture
Arithmetic Instructions

Addition:
add[o][.] RT,RA,RB RT = RA + RB Add  cax[o][.]
addc[o][.] RT,RA,RB RT = RA + RB Add Carrying  a[o][.]
adde[o][.] RT,RA,RB RT = RA + RB + carry Add Extended  ae[o][.]
addi RT,D(RA) RT = D + (RA|0) Add Immediate  cal
addic[.] RT,RA,SI RT = RA + SI Add Immediate Carrying  ai[.]
addis RT,RA,UI RT = (UI ! 0x0000) + (RA|0)Add Immediate Shifted  cau
addme[o][.] RT,RA RT = RA + -1 + carry Add to Minus One Extended  ame[o][.]
addze[o][.] RT,RA RT = RA + 0 + carry Add to Zero Extended  aze[o][.]

Subtraction:
si[.] RT,RA,SI RT = RA - SI Subtract Immediate
subf[o][.] RT,RA,RB RT = RB - RA ✓ Subtract From (without modifying CA)
subfc[o][.] RT,RA,RB RT = RB - RA Subtract From Carrying  sf[o][.]
subfe[o][.] RT,RA,RB RT = RB + ~RA + carry Subtract From Extended  sfe[o][.]
subfic[.] RT,RA,SI RT = SI - RA Subtract From Immediate  Carrying sfi
subfme[o][.] RT,RA RT = -1 + ~RA + carry Sub. From Minus One Extended  sfme[o][.]
subfze[o][.] RT,RA RT = 0 + ~RA + carry Subtract From Zero Extended  sfze[o][.]

Multiplication:
mul[o][.] RT,RA,RB (RT!MQ) = RB * RA ✗✧• Multiply
mulhd[.] RT,RA,RB ✓✁ Multiply High Doubleword
mulhdu[.] RT,RA,RB ✓✁ Multiply High Doubleword Unsigned
mulhw[.] RT,RA,RB ✓ Multiply High Word
Assembly Language Programming and Optimization Techniques for the Power Architecture 61



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

62 Assembly Language Programming and Optimization Techniques for the Power Architecture
mulhwu[.] RT,RA,RB ✓ Multiply High Word Unsigned
mulli RT,RA,SI RT = RA * SI Multiply Immediate  muli
mulld[.] RT,RA,RB ✓✁ Multiply Low Doubleword
mullw[o][.] RT,RA,RB RT = RA * RB • Multiply Short  muls[o][.]

Division:
div[o][.] RT,RA,RB RT = (RA!MQ)/RB ✗✧• Divide

MQ = (RA!MQ)%RB
divd[o][.] RT,RA,RB ✓✁ Divide Doubleword
divdu[o][.] RT,RA,RB ✓✁ Divide Doubleword Unsigned
divs[o][.] RT,RA,RB RT = RA / RB ✗✧• Divide Short

MQ = RA % RB
divw[o][.] RT,RA,RB RT = RA / RB ✓ Divide Word
divwu[o][.] RT,RA,RB RT = RA / RB ✓ Divide Word Unsigned

Miscellaneous:
abs[o][.] RT,RA RT = |RA| ✗✧• Absolute Value
doz[o][.] RT,RA,RB t = RB - RA ✗✧• Difference or Zero

RT = (t < 0) ? 0 : t
dozi RT,RA,SI t = SI - RA ✗✧ Difference or Zero Immediate

RT = (t < 0) ? 0 : t
nabs[o][.] RT,RA RT = -|RA| ✗✧• Negative Absolute Value
neg[o][.] RT,RA RT = -RA Negate

[Table A.1] Instruction Set Summary (cont.)

Assembly Language Programming and Optimization Techniques for the Power Architecture 62



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

63 Assembly Language Programming and Optimization Techniques for the Power Architecture
Condition Register Instructions

Boolean CR Operations:
crand BT,BA,BB CR[BT] = CR[BA] & CR[BB] CR AND
crandc BT,BA,BB CR[BT] = CR[BA] & ~CR[BB] CR AND with Complement
creqv BT,BA,BB CR[BT] = ~(CR[BA] ^ CR[BB]) CR Equal
crnand BT,BA,BB CR[BT] = ~(CR[BA] & CR[BB]) CR NAND
crnor BT,BA,BB CR[BT] = ~(CR[BA] | CR[BB]) CR NOR
cror BT,BA,BB CR[BT] = CR[BA] | CR[BB] CR OR
crorc BT,BA,BB CR[BT] = CR[BA] | ~CR[BB] CR OR with Complement
crxor BT,BA,BB CR[BT] = CR[BA] ^ CR[BB] CR AND

Move CR Field:
mcrf BF,BFA CR{BF} = CR{BFA} Move CR Field
mcrfs BF,BFA CR{BF} = FPSCR{BFA} Move to CR Field from FPSCR
mcrxr BF CR{BF} = XER[0-3] • Move to CR Field from XER
mfcr RT RT = CR Move From CR
mtcrf FXM,RS CR = RS (under control of FXM) Move To CR Fields

Assembly Language Programming and Optimization Techniques for the Power Architecture 63



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

64 Assembly Language Programming and Optimization Techniques for the Power Architecture
Logical/Boolean Instructions

AND:
and[.] RA,RS,RB RA = RS & RB AND
andc[.] RA,RS,RB RA = RS & ~RB AND with Complement
andi. RA,RS,UI RA = RS & (0x0000!UI) AND Immediate Lower  andil.
andis. RA,RS,UI RA = RS & (UI!0x0000) AND Immediate Shift  andiu.

OR:
or[.] RA,RS,RB RA = RS | RB OR
orc[.] RA,RS,RB RA = RS | ~RB OR with Complement
ori RA,RS,UI RA = RS | (0x0000!UI) OR Immediate Lower  oril
oris RA,RS,UI RA = RS | (UI!0x0000) OR Immediate Upper  oriu

XOR:
xor[.] RA,RS,RB RA = RS ^ RB XOR
xori RA,RS,UI RA = RS ^ (0x0000!UI) XOR Immediate Lower  xoril
xoris RA,RS,UI RA = RS ^ (UI!0x0000) XOR Immediate Upper  xoriu

Miscellaneous:
cntlzw[.] RA,RS RA = # of leading 0’s in RS • Count Leading Zeroes  cntlz[.]
cntlzd[.] RA,RS RA = # of leading 0’s in RS ✓✁ Count Leading Zeroes Doubleword
eqv[.] RA,RS,RB RA = ~(RS ^ RB) Equivalent
extsb[.] RA,RS RA[0-23] = RS[24] ✓ Extend Sign Byte (8-bit -> 32-bit)

RA[24-31] = RS[24-31]

Assembly Language Programming and Optimization Techniques for the Power Architecture 64



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

65 Assembly Language Programming and Optimization Techniques for the Power Architecture
extsh[.] RA,RS RA[0-15] = RS[16] Extend Sign (16-bit -> 32-bit)  exts[.]

RA[16-31] = RS[16-31]
extsw[.] RA,RS RA[0-31] = RS[32] ✓✁ Extend Sign Word (32-bit -> 64-bit)

RA[32-63] = RS[32-63]
nand[.] RA,RS,RB RA = ~(RS & RB) NAND
nor[.] RA,RS,RB RA = ~(RS | RB) NOR
not[.] RA,RS same as “nor RA,RS,RS” ✓ Complement Register

[Table A.1] Instruction Set Summary (cont.)

Assembly Language Programming and Optimization Techniques for the Power Architecture 65



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

66 Assembly Language Programming and Optimization Techniques for the Power Architecture
Floating-Point Instructions

Floating-Point Arithmetic:
fabs[.] FRT,FRB FRT = |FRB| F Absolute Value
fadd[.] FRT,FRA,FRB FRT = FRA + FRB F Add  fa[.]
fadds[.] FRT,FRA,FRB FRT = FRA + FRB ✓ F Add Single-Precision
fcfid[.] FRT,FRB ✓✁ F Convert From Int (Double)
fctid[.] FRT,FRB ✓✁ F Convert To Int (Double)
fctidz[.] FRT,FRB ✓✁ F Conv To Int (Dbl) Rnd to Zero
fctiw[.] FRT,FRB ✓ F Convert To Int (Word)
fctiwz[.] FRT,FRB ✓ F Conv To Int (Wd) Rnd to Zero
fdiv[.] FRT,FRA,FRB FRT = FRA / FRB F Divide  fd[.]
fdivs[.] FRT,FRA,FRB FRT = FRA / FRB ✓ F Divide Single-Precision
fmadd[.] FRT,FRA,FRC,FRB FRT = FRA * FRC + FRB F Multiply Add  fma[.]
fmadds[.] FRT,FRA,FRC,FRB FRT = FRA * FRC + FRB ✓ F Multiply-Add Single
fmr[.] FRT,FRB FRT = FRB F Move Register
fmsub[.] FRT,FRA,FRC,FRB FRT = FRA * FRC - FRB F Multiply Subtract  fms[.]
fmsubs[.] FRT,FRA,FRC,FRB FRT = FRA * FRC - FRB ✓ F Multiply-Subtract Single
fmul[.] FRT,FRA,FRC FRT = FRA * FRC F Multiply  fm[.]
fmuls[.] FRT,FRA,FRC FRT = FRA * FRC ✓ F Multiply Single-Precision
fnabs[.] FRT,FRB FRT = -|FRB| F Negative Absolute Value
fneg[.] FRT,FRB FRT = -FRB F Negate
fnmadd[.] FRT,FRA,FRC,FRB FRT = -(FRA * FRC + FRB) F Neg. Multiply Add  fnma[.]
fnmadds[.] FRT,FRA,FRC,FRB FRT = -(FRA * FRC + FRB) ✓ F Neg. Multiply-Add Single
fnmsub[.] FRT,FRA,FRC,FRB FRT = -(FRA * FRC - FRB) F Neg. Mult-Subtract  fnms[.]

Assembly Language Programming and Optimization Techniques for the Power Architecture 66



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

67 Assembly Language Programming and Optimization Techniques for the Power Architecture
fnmsubs[.] FRT,FRA,FRC,FRB FRT = -(FRA * FRC - FRB) ✓ F Neg. Multiply-Sub. Single
fres[.] FRT,FRB FRT = 1 / FRB ✓✁ F Reciprocal Est. Single
frsp[.] FRT,FRB FRT = (single)FRB F Round to Single Precision
frsqrte[.] FRT,FRB ✓✁ F Reciprocal Square Root Est.
fsub[.] FRT,FRA,FRB FRT = FRA - FRB F Subtract  fs[.]
fsubs[.] FRT,FRA,FRB FRT = FRA - FRB ✓ F Subtract Single-Precision
fsel[.] FRT,FRA,FRC,FRB FRT = (FRA>=0)?FRC:FRB ✓✁ F Select
fsqrt[.] FRT,FRB ✓✁ F Square Root
fsqrts[.] FRT,FRB ✓✁ F Square Root Single-Precision

Floating-Point Compare:
fcmpo[.] BF,FRA,FRB CR{BF} = ordered compare of FRA and FRB F Compare Ordered
fcmpu[.] BF,FRA,FRB CR{BF} = unordered compare of FRA and FRB F Compare 
Unordered

FPSCR Operations:
mffs[.] FRT FRT = (0xFFFFFFFF ! FPSCR) Move From FPSCR
mtfsb0[.] BT FPSCR[BT] = 0 Move To FPSCR Bit 0
mtfsb1[.] BT FPSCR[BT] = 1 Move To FPSCR Bit 1
mtfsf[.] FLM,FRB FPSCR = FRB (under control of FLM) Move To FPSCR Fields
mtfsfi[.] BF,I FPSCR{BF} = I Move To FPSCR Field Immediate

[Table A.1] Instruction Set Summary (cont.)

Assembly Language Programming and Optimization Techniques for the Power Architecture 67



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

68 Assembly Language Programming and Optimization Techniques for the Power Architecture
Load/Store Instructions

Load:
lbz[u] RT,D(RA) RT <= Byte from D+(RA|0)
lbz[u]x RT,RA,RB RT <= Byte from RB+(RA|0)
ld[u] RT,D(RA) ✓✁ Load Doubleword
ld[u]x RT,RA,RB ✓✁ Load Doubleword Indexed
ldarx RT,RA,RB ✓✁ Load Doubleword and Reserve Indexed
lfd[u] FRT,D(RA) FRT <= Doubleword from D+(RA|0)
lfd[u]x FRT,RA,RB FRT <= Doubleword from RB+(RA|0)
lfs[u] FRT,D(RA) FRT <= Word from D+(RA|0)
lfs[u]x FRT,RA,RB FRT <= Word from RB+(RA|0)
lha[u] RT,D(RA) RT <= Halfword from D+(RA|0)
lha[u]x RT,RA,RB RT <= Halfword from RB+(RA|0)
lhbrx RT,RA,RB RT <= Byte-reversed halfword from RB+(RA|0)
lhz[u] RT,D(RA) RT <= Halfword from D+(RA|0)
lhz[u]x RT,RA,RB RT <= Halfword from RB+(RA|0)
li RT,SI RT = SI  lil
lis RT,UI RT = (UI ! 0x0000)  liu
lmw RT,D(RA) Load consecutive words from D+(RA|0) to RT...R31  lm
lwa RT,D(RA) ✓✁ Load Word Algebraic
lwa[u]x RT,RA,RB ✓✁ Load Word Algebraic Indexed
lwarx RT,RA,RB ✓ Load Word and Reserve Indexed
lwbrx RT,RA,RB RT <= Byte-reversed word from RB+(RA|0)  lbrx
lwz[u] RT,D(RA) RT <= Word from D(RA)  l[u]

Assembly Language Programming and Optimization Techniques for the Power Architecture 68



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

69 Assembly Language Programming and Optimization Techniques for the Power Architecture
lwz[u]x RT,RA,RB RT <= Word from RB+(RA|0)  l[u]x

Store:
stb[u] RS,D(RA) Store byte in RS into D+(RA|0)
stb[u]x RS,RA,RB Store byte in RS into RB+(RA|0)
std[u] RS,D(RA) ✓✁ Store Doubleword
std[u]x RS,RA,RB ✓✁ Store Doubleword Indexed
stdcx RS,RA,RB ✓✁ Store Doubleword Conditional Indexed
stfd[u] FRS,D(RA) Store doubleword in FRS into D+(RA|0)
stfd[u]x FRS,RA,RB Store doubleword in FRS into RB+(RA|0)
stfiwx FRS,RA,RB ✓✁ Store FP as Integer Word Indexed
stfs[u] FRS,D(RA) Store word in FRS into D+(RA|0)
stfs[u]x FRS,RA,RB Store word in FRS into RB+(RA|0)
sth[u] FRS,D(RA) Store halfword in FRS into D+(RA|0)
sth[u]x RS,RA,RB Store halfword in FRS into RB+(RA|0)
sthbrx RS,RA,RB Store byte-reversed halfword in RS into RB+(RA|0)
stmw RS,D(RA) Store RS...R31 into consecutive mem starting at D+(RA|0)  stm
stwbrx RS,RA,RB Store byte-reversed word in RS into D+(RA|0)  stbrx
stwcx. RS,RA,RB ✓ Store Word Conditional Indexed
stw[u] RS,D(RA) Store word in RS into  D+(RA|0)  st[u]
stw[u]x RS,RA,RB Store word in RS into RB+(RA|0)  st[u]x

String Operations:
lscbx[.] RT,RA,RB ✗✧• Load string and compare byte indexed
lswi RT,RA,NB Load string immediate  lsi
lswx RT,RA,RB Load string indexed  lsx
Assembly Language Programming and Optimization Techniques for the Power Architecture 69



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

70 Assembly Language Programming and Optimization Techniques for the Power Architecture
stswi RS,RA,NB Store string immediate  stsi
stswx RS,RA,RB Store string indexed  stsx

[Table A.1] Instruction Set Summary (cont.)

Assembly Language Programming and Optimization Techniques for the Power Architecture 70



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

71 Assembly Language Programming and Optimization Techniques for the Power Architecture

Shift, Rotate and Mask Instructions

Shift Left:
sld[.] RA,RS,RB ✓✁ Shift Left Doubleword
sle[.] RA,RS,RB RA = (RS << RB) ; MQ = (RS lrot RB) ✗✧• Shift Left Extended
sleq[.] RA,RS,RB RA = (RS!MQ << RB) ; MQ = (RS lrot RB) ✗✧• Shift Left Extended with 
MQ
sliq[.] RA,RS,SH RA = (RS << SH) ; MQ = (RS lrot SH) ✗✧• Shift Left Immediate with MQ
slliq[.] RA,RS,SH RA = (RS!MQ << SH) ; MQ = (RS lrot SH) ✗✧• Shift Left Long Immed w. 
MQ
sllq[.] RA,RS,RB RA = (RS << SH) | (MQ & mask) ✗✧• Shift Left Long with MQ
slq[.] RA,RS,RB RA = (RS<<RB)&mask ; MQ=(RS lrot RB) ✗✧• Shift Left with MQ
slw[.] RA,RS,RB RA = (RS << RB) • Shift Left  sl[.]

Shift Right:
srad[.] RA,RS,RB ✓✁ Shift Right Algeb Doubleword
sradi[.] RA,RS,SH ✓✁ Shift Right Algeb Dbl Immed
sraiq[.] RA,RS,SH RA = (RS >> SH) ; MQ = (RS rrot SH)✗✧• Shift Right Algeb. Imm. w. MQ
sraq[.] RA,RS,SH RA = (RS >> SH) ; MQ = (RS rrot SH)✗✧• Shift Right Algebraic with MQ
sraw[.] RA,RS,RB RA = (RS >> RB) • Shift Right Algebraic  sra[.]
srawi[.] RA,RS,SH RA = (RS >> SH) • Shift Right Algeb. Imm.  srai[.]
srd[.] RA,RS,RB ✓✁ Shift Right Doubleword
sre[.] RA,RS,RB RA = (RS >> RB) ; MQ = (RS rrot RB) ✗✧• Shift Right Extended
srea[.] RA,RS,RB RA = (RS >> RB) ; MQ = (RS rrot RB) ✗✧• Shift Right Extended Algebraic

Assembly Language Programming and Optimization Techniques for the Power Architecture 71



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

72 Assembly Language Programming and Optimization Techniques for the Power Architecture
sreq[.] RA,RS,RB RA = (RS >> RB) ; MQ = (RS rrot RB) ✗✧• Shift Right Extended with MQ
sriq[.] RA,RS,SH RA = (RS >> SH) ; MQ = (RS rrot SH)✗✧• Shift Right Immed with MQ
srliq[.] RA,RS,SH RA = (RS >> SH) ; MQ = (RS rrot SH)✗✧• Shift Right Long Imm. w. MQ
srlq[.] RA,RS,RB RA = (RS >> RB) ✗✧• Shift Right Long with MQ
srq[.] RA,RS,RB RA = (RS >> RB) & mask ✗✧• Shift Right with MQ
srw[.] RA,RS,RB RA = (RS >> RB) • Shift Right  sr[.]

Rotate:
rldcl[.] RA,RS,RB,BM ✓✁ Rotate Left Dblword; Clear Lft
rldcr[.] RA,RS,RB,BM ✓✁ Rotate Left Dblword; Clr Right
rldic[.] RA,RS,SH,BM ✓✁ Rotate Left Dblword Imm; Clr
rldicl[.] RA,RS,SH,BM ✓✁ Rotate Left Dbl Imm; Clear Lft
rldicr[.] RA,RS,SH,BM ✓✁ Rotate Left Dbl Imm; Clear Rt
rldimi[.] RA,RS,SH,BM ✓✁ Rotate Left Dbl Imm; Mask Ins.
rlmi[.] RA,RS,RB,BM RA = ((RS << RB) & BM) | (RA & ~BM) ✗✧• Rotate Left; Mask Insert
rlwimi[.] RA,RS,SH,BM RA = ((RS << SH) & BM) | (RA & ~BM) • Rot. L. Imm.; Mask Ins.  
rlimi[.]
rlwinm[.] RA,RS,SH,BM RA = (RS << SH) & BM • Rot. L. Imm.; & Mask  rlinm[.]
rlwnm[.] RA,RS,RB,BM RA = (RS << RB) & BM • Rotate L.; & w. Mask  rlnm[.]

Bit Mask:
maskg[.] RA,RS,RB RA = mask from RS and RB ✗✧• Mask Generate
maskir[.] RA,RS,RB RA = (RS & RB) | (RA & ~RB) ✗✧ Mask Insert from Register
rrib[.] RA,RS,RB RA[RB] = RS[0] ✗✧• Rotate Right and Insert Bit

Assembly Language Programming and Optimization Techniques for the Power Architecture 72



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

73 Assembly Language Programming and Optimization Techniques for the Power Architecture

[Table A.1] Instruction Set Summary (cont.)

Assembly Language Programming and Optimization Techniques for the Power Architecture 73



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

74 Assembly Language Programming and Optimization Techniques for the Power Architecture
Comparison Instructions

cmpw BF,RA,RB CR{BF} = compare of RA and RB Compare  cmp
cmpwi BF,RA,SI CR{BF} = compare of RA and SI Compare Immediate  cmpi
cmplw BF,RA,RB CR{BF} = unsigned compare of RA and RB Compare Logical  cmpl
cmplwi BF,RA,UI CR{BF} = unsigned compare of RA and UI Compare Logical Immed  
cmpli

Flow of Control Instructions

Branch Instructions:
b[l][a] <addr> branch to address
bbt[l] BIT,<addr> branch if BIT of CR is set
bbf[l][a] BIT,<addr> branch if BIT of CR is clear
bc[l][a] BO,BI,<addr> branch on BO condition
bcctr[l] BO,BI branch to address in CTR on BO condition  bcc[l]
bclr[l] BO,BI branch to address in LR on BO condition  bcr[l]

Trap & Supervisor Instructions:
rfi return from trap/interrupt Return From Interrupt
rfsvc return from svc Return From Supervisor Call
svc[l] LEV,FL1,FL2 generate supervisor call interrupt ✗ Supervisor Call
sc generate supervisor call interrupt Supervisor Call Absolute  svc[l]a
td TO,RA,RB trap when TO condition is true ✓✁ Trap Doubleword
tdi TO,RA,SI trap when TO condition is true ✓✁ Trap Doubleword Immediate

Assembly Language Programming and Optimization Techniques for the Power Architecture 74



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

75 Assembly Language Programming and Optimization Techniques for the Power Architecture
tw TO,RA,RB trap when TO condition is true Trap Word  t
twi TO,RA,SI trap when TO condition is true Trap Word Immediate  ti

System Instructions

Look-aside Buffer Instructions:
slbia invalidate entire SLB ✓✁ SLB Invalidate All
slbie RB invalidate SLB entry ✓✁ SLB Invalidate Entry
slbiex RB invalidate SLB entry ✓✁ SLB Invalidate Entry by Index
tlbia invalidate entire TLB ✓✁ TLB Invalidate All
tlbie RB invalidate TLB entry TLB Invalidate Entry  tlbi
tlbiex RB invalidate TLB entry ✓✁ TLB Invalidate Entry by Index
tlbsync invalidate TLB entry ✓✁ TLB Synchronize

Move To/From Special Registers:
mfmsr RT RT = MSR Move From Machine State Register
mfspr RT,SPR RT = SPR Move From Special Purpose Register
mfsr RT,SR RT = SR Move From Segment Register
mfsrin RS,RB RS = SR selected from RB ✗✧ Move From SR Indirect  mfsri
mftb RT,TBR ✓ Move From Time Base
mftbu13† ✓ Move From Time Base Upper
mr RA,RS same as “or RA,RS,RS” ✓ Move Register
mtmsr RS MSR = RS Move To Machine State Register

13†  The mftbu instruction is listed as a new instruction in [Case92], but is not included in the PowerPC User’s Manual.
Assembly Language Programming and Optimization Techniques for the Power Architecture 75



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

76 Assembly Language Programming and Optimization Techniques for the Power Architecture
mtspr SPR,RS SPR = RS Move To Special Purpose Register
mtsr SR,RS SR = RS Move To Segment Register
mtsrin RS,RB SR selected from RB = RS Move To SR Indirect  mtsri

[Table A.1] Instruction Set Summary (cont.)

Assembly Language Programming and Optimization Techniques for the Power Architecture 76



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

77 Assembly Language Programming and Optimization Techniques for the Power Architecture

Cache & I/O Operations:
clcs RT,RA RT = cache line size ✗✧ Cache Line Compute Size
clf RA,RB flush a data cache line ✗ Cache Line Flush
cli RA,RB invalidate a data cache line ✗ Cache Line Invalidate
dcbf RA,RB flush a data cache block ✓ Data Cache Block Flush
dcbi RA,RB invalidate a data cache block ✓ Data Cache Block Invalidate
dcbst RA,RB store block from cache into memory ✓ Data Cache Block Store
dcbt RA,RB prefetch block into cache ✓ Data Cache Block Touch
dcbtst RA,RB prefetch block into cache ✓ Data Cache Block Touch For Store
dcbz RA,RB set cache block to all 0’s ✓ Data Cache Block Set to Zero
dclst RA,RB store data from cache into memory ✗ Data Cache Line Store
dclz RA,RB set bytes of the data cache to 0 ✗ Data Cache Line Set to Zero
eciwx RT,RA,RB ✓ External Control Input Word Indexed
ecowx RT,RA,RB ✓ Ext. Control Output Word Indexed
eieio ✓ Enforce In-order Execution of I/O
icbi RA,RB invalidate an instruction cache block✓ Instruction Cache Block Invalidate
isync synchronize the instruction cache Instruction Cache Synchronize  ics
rac[.] RT,RA,RB RT = RB + (RA|0) ✗• Real Address Compute
sync synchronize the data cache Synchronize Data Cache  dcs

[Table A.1] Instruction Set Summary (cont.)

Assembly Language Programming and Optimization Techniques for the Power Architecture 77



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

78 Assembly Language Programming and Optimization Techniques for the Power Architecture

Appendix B: Summary of Instruction Set Changes to POWER for PowerPC

This information was derived from [Case91,92], [Oehler92], [Diefendorff93], and [Motorola93].

• All instructions which rely on the MQ register have been eliminated.  These 18 instructions are: 
mul[o][.], div[o][.], divs[o][.], sle[.], sleq[.], sliq[.], slliq[.], sllq[.], slq[.], 
sraiq[.], sraq[.], sre[.], srea[.], sreq[.], sriq[.], srliq[.], srlq[.], and srq[.].

• Instructions whose operation was data dependent have been eliminated.  These instructions would 
require an additional multiplexer which would increase the critical path of the processor.  These 4 
instructions are: abs[o][.], doz[o][.], dozi, and nabs[o][.].

• Instructions which required three reads from the general register file have been removed.  These  
instructions include: maskir[.], rrib[.], and rlmi[.].

• Various instructions which loaded/stored multiple words were either eliminated or removed from 
microcode and trap-emulated instead.  These affected instructions are: lscbx[.] (removed), lsi, 
lsx, stsi, and stsx (trap-emulated). 

• The mask generation (maskg[.]) instruction has been removed to reduce mask complexity.

• Hardware checks for rarely used “corner cases” have been removed.  For example, the results of a 
lu r14,4(r14) are now undefined.  Under the POWER architecture, this condition is detected and 
the register is loaded with the data and not with the updated address.

Assembly Language Programming and Optimization Techniques for the Power Architecture 78



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

79 Assembly Language Programming and Optimization Techniques for the Power Architecture
• The requirement that all instructions execute in 1 cycle (with a few exceptions, of course) has been 

relaxed so that a larger number of instructions now require multiple cycles.

• A fixed-point subtract instruction which does not update the Carry (CA) bit of the XER was added 
(subf[o][.])

• New signed multiply and divide operations were added to replace the ones removed, and unsigned 
integer multiply and divide instructions were added.

• Single-precision floating-point instructions were added.

• A floating-point square root instruction was added to make IEEE conformance easier.

• Floating-point to integer (word and doubleword) instructions were added.

• Instructions were added to assist the programmer with synchronizing multi-threaded applications. 
Additional operations include: load and reserve (lXarx) and store conditional (stXcx).

• Instructions were added to control data moving into and out of the processor cache.

• A weak-ordered storage model was defined.  This means that the programmer must explicitly 
synchronize shared memory before accessing the data.

• Extensions were made to the architecture to support both 32-bit and 64-bit memory models.  These 
extensions include a large number of instructions to support doubleword operations.

Assembly Language Programming and Optimization Techniques for the Power Architecture 79



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

80 Assembly Language Programming and Optimization Techniques for the Power Architecture

Appendix C: Sample RS/6000 Assembly Program
# sample.s
# sample RS/6000 assembly language program
# Copyright 1993 Gary J Kacmarcik
#
# this is sample RS/6000 assembly code which is meant to be linked with
# the standard C libraries.
# 
# build the executable using:
# cc -o sample sample.s

# because we are using the C compiler (so that we can reference the .printf
# function), we must make our main routine globally visible to the linker
# the "pr" in the brackets after the symbol name identifies this symbol
# as belonging to the .text section (program area)

.globl .main[pr]

# since printf is defined elsewhere, we must declare it
.extern .printf[pr]

# define our entries in the Table Of Contents
# here is where we define entries for functions, function descriptors, and
# external variables

.toc
T.data: .tc data[tc],data[rw] # TOC for data area
T.main: .tc .main[tc],main[ds] # TOC for main function descriptor

Assembly Language Programming and Optimization Techniques for the Power Architecture 80



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

81 Assembly Language Programming and Optimization Techniques for the Power Architecture
# define the function descriptor for main
# these belong in a csect of type "ds"
# function descriptors are used to describe function pointers in various
# high-level languages (C, FORTRAN)

.csect main[ds]

.long .main[pr],TOC[tc0],0

###############################
# the main function (finally) #
###############################

.csect .main[pr]

# define a few assembler variables which define our stack area
.set ngprs,1 # of gpr’s we need to save
.set nfprs,0 # of fpr’s we need to save
.set regarea,8*nfprs+4*ngprs # size of register save area
.set argarea,32 # size of output argument area
.set linkarea,24 # size of link area
.set localarea,0 # size of local stack area
.set totalsize,regarea+argarea+linkarea+localarea

# function prolog
# these actions must be performed at the beginning of each function
# save the LR if this is not a leaf routine
mflr r0 # get the Link Register
st r0,8(r1) # save the LR on stack
# save the CR if it is modified in this routine
mfcr r0 # get the Condition Register
st r0,4(r1) # save the CR on the stack

Assembly Language Programming and Optimization Techniques for the Power Architecture 81



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

82 Assembly Language Programming and Optimization Techniques for the Power Architecture
# save any GPR's and FPR's which are used by this routine
# gpr’s get saved at -regarea(r1)
# fpr’s get saved at -8*nfprs(r1)
stm r31,-regarea(r1) # we only use register r31
# decrement the stack pointer and save the stack back-chain
stu r1,-totalsize(r1)

Assembly Language Programming and Optimization Techniques for the Power Architecture 82



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

83 Assembly Language Programming and Optimization Techniques for the Power Architecture

# load the address of our string from the .data section
# to do this we must first get the address of the our area in
# .data section.  we accomplish this by using the TOC entry
# that we set up for the data[rw] csect
l r14,T.data(r2)
# now r14 points to the beginning of our csect in the .data section.
# get the address of our string by adding the offset from the start
# of the csect to the strin
cal r3,_str1(r14)

# call the printf function
# because the function is not defined in the same module as
# this function, the linker will first call some global linkage
# code to set up the called routine’s proper TOC.
# We must add a dummy instruction (cror 31,31,31) after the
# function call which will be overwritten with an instruction
# to restore our local TOC. (l r2,20(r1))
bl .printf[pr]
cror 31,31,31

# load the address of the second string
cal r3,_str2(r14)

# call printf again
bl .printf[pr]
cror 31,31,31

# function epilog
# these actions must be performed at the end of each function

Assembly Language Programming and Optimization Techniques for the Power Architecture 83



Main Memory

DCU

ICU FXU FPU

BPU

Instruction
Cache Unit

Fixed-Point
Unit

Floating-Point
Unit

Branch
Processing Unit

Data Cache Unit

[Figure 2.1] Logical view of CPU functional units

84 Assembly Language Programming and Optimization Techniques for the Power Architecture
# restore the LR that we saved earlier
l r0,totalsize+8(r1)
mtlr r0
# restore the stack pointer
ai r1,r1,totalsize
# restore any registers that we saved
lm r31,-regarea(r1)

# end of function - return
brl

# data area
# since all of the r/w data needs to be stored in the .data section, we start
# a new csect

.csect  data[rw]

.align  2 # make sure its aligned properly

# the first string
_str1: .byte "hell"

.byte 10,0

# the second string
_str2: .byte "oh world"

.byte 10,0

Assembly Language Programming and Optimization Techniques for the Power Architecture 84


